To solve this problem we will apply the concepts related to the change in length in proportion to the area and volume. We will define the states of the lengths in their final and initial state and later with the given relationship, we will extrapolate these measures to the area and volume
The initial measures,
(Surface of a Cube)
The final measures
Given,
Now applying the same relation we have that
The relation with volume would be
Volume of the cube change by a factor of 2.83
Thank you!!
Answer:
(a) 22 kN
(b) 36 kN, 29 kN
(c) left will decrease, right will increase
(d) 43 kN
Explanation:
(a) When the truck is off the bridge, there are 3 forces on the bridge.
Reaction force F₁ pushing up at the first support,
reaction force F₂ pushing up at the second support,
and weight force Mg pulling down at the middle of the bridge.
Sum the torques about the second support. (Remember that the magnitude of torque is force times the perpendicular distance. Take counterclockwise to be positive.)
∑τ = Iα
(Mg) (0.3 L) − F₁ (0.6 L) = 0
F₁ (0.6 L) = (Mg) (0.3 L)
F₁ = ½ Mg
F₁ = ½ (44.0 kN)
F₁ = 22.0 kN
(b) This time, we have the added force of the truck's weight.
Using the same logic as part (a), we sum the torques about the second support:
∑τ = Iα
(Mg) (0.3 L) + (mg) (0.4 L) − F₁ (0.6 L) = 0
F₁ (0.6 L) = (Mg) (0.3 L) + (mg) (0.4 L)
F₁ = ½ Mg + ⅔ mg
F₁ = ½ (44.0 kN) + ⅔ (21.0 kN)
F₁ = 36.0 kN
Now sum the torques about the first support:
∑τ = Iα
-(Mg) (0.3 L) − (mg) (0.2 L) + F₂ (0.6 L) = 0
F₂ (0.6 L) = (Mg) (0.3 L) + (mg) (0.2 L)
F₂ = ½ Mg + ⅓ mg
F₂ = ½ (44.0 kN) + ⅓ (21.0 kN)
F₂ = 29.0 kN
Alternatively, sum the forces in the y direction.
∑F = ma
F₁ + F₂ − Mg − mg = 0
F₂ = Mg + mg − F₁
F₂ = 44.0 kN + 21.0 kN − 36.0 kN
F₂ = 29.0 kN
(c) If we say x is the distance between the truck and the first support, then using our equations from part (b):
F₁ (0.6 L) = (Mg) (0.3 L) + (mg) (0.6 L − x)
F₂ (0.6 L) = (Mg) (0.3 L) + (mg) (x)
As x increases, F₁ decreases and F₂ increases.
(d) Using our equation from part (c), when x = 0.6 L, F₂ is:
F₂ (0.6 L) = (Mg) (0.3 L) + (mg) (0.6 L)
F₂ = ½ Mg + mg
F₂ = ½ (44.0 kN) + 21.0 kN
F₂ = 43.0 kN
Answer:
Explanation:
given:
weight of bridge = 44 kN
weight of truck = 21 kN
a) truck is off the bridge
since the bridge is symmetrical, left support is equal to right support.
Left support = Right support = 44/2
Left support = Right support = 22 kN
b) truck is positioned as shown.
to get the reaction at left support, take moment from right support = 0
∑M at Right support = 0
Left support (0.6) - weight of bridge (0.3) - weight of truck (0.4) = 0
Left support = 44 (0.3) + 21 (0.4)
0.6
Left support = 36 kN
Right support = weight of bridge + weight of truck - Left support
Right support = 44 + 21 - 36
Right support = 29 kN
c)
as the truck continues to drive to the right, Left support will decrease
as the truck get closer to the right support, Right support will increase.
d) truck is directly under the right support, find reaction at Right support?
∑M at Left support = 0
Right support (0.6) - weight of bridge (0.3) - weight of truck (0.6) = 0
Right support = 44 (0.3) + 21 (0.6)
0.6
Right support = 43 kN
A. A football flying through the air
B. An apple falling from a tree
C. A pencil rolling on the ground
D.A rocket dropping from its maximum height
Answer:
Explanation:
designer
illusionist
engineer
entrepreneur
salesperson
human
inventor
The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M
Given data :
separation between slits ( d ) = 1.5 x 10⁻³ m
wavelength of light ( λ ) = 514 * 10⁻⁹ m
Distance from narrow slit ( D ) = 5.0 m
we apply the formula below
w = D * λ / d ---- ( 1 )
where : w = distance between adjacent bright fringes
Back to equation ( 1 )
w = ( 5 * 514 * 10⁻⁹ ) / 1.5 x 10⁻³
= 1.7 * 10⁻³ M
Hence we can conclude that The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M
Learn more about bright fringes calculations : brainly.com/question/4449144
Answer:
m
Explanation:
d = separation between the two narrow slits = 1.5 mm = 1.5 x 10⁻³ m
λ = wavelength of the light = 514 nm = 514 x 10⁻⁹ m
D = Distance of the screen from the narrow slits = 5.0 m
w = Distance between the adjacent bright fringes on the screen
Distance between the adjacent bright fringes on the screen is given as
m
(b) Is the initial position of car A greater than, less than, or equal to the
initial position of car B?
(c) In the time period from t = 0 tot = 1 s, is car A ahead of car B,
behind car B, or at the same position as car B?
a. ) Is the velocity of car A less than the velocity of car B b. the initial position of car A greater than the initial position of car B c. ahead In the time period from t = 0 tot = 1 s, is car A ahead of car B?.
Velocity is the parameter which is different from speed, can be defined as the rate at which the position of the object is changed with respect to time, it is basically speeding the object in a specific direction in a specific rate.
Velocity is a vector quantity which shows both magnitude and direction and The SI unit of velocity is meter per second (ms-1). If there is a change in magnitude or the direction of velocity of a body, then it is said to be accelerating.
Finding the final velocity is simple but few calculations and basic conceptual knowledge are needed.
For more details regarding velocity, visit
#SPJ2
Answer:
a. less than, b. greater than, c. ahead
Explanation:
B. 7.9J
C. 15J
D. 20J
Answer:
D. 20J
Explanation:
Answer:
Explanation:
yes