We are given the amount of CaCO3 to decompose when heated. This will be our starting point.
98.60 g CaCO3 ( 1 mol CaCO3 / 100.09 grams CaCO3) (1 mol CaO / 1 mol CaCO3 ) ( 56.08 g O2 / 1 mol CaO) = 55.25 g CaO
0.9851mol. This is the rt answer just did it
B. The collision rate of the reactant particles increased.
C. The concentrations of the reactant particles increased.
D. The concentrations of the product particles decreased.
A. What is the limiting reagent?
B. How many grams of the excess reactant remains?
C. How many grams of each product is formed?
D. If 12 grams of NaNO3 actually formed in the reaction, what is the percent yield of this reaction?
Answer:
Explanation:
Pb(NO3)2 (aq) + 2 NaI (aq) --> PbI2 (s) + 2 NaNO3 (aq)
MM for each compound -
Pb(NO3): 207 + 14x2 + 16x3x2 = 331
PI2: 207 + 127x2 = 461
NaI: 23 + 127 = 150
NaNO3: 23 + 14 + 16x3 = 85
Moles of Pb(NO3)2 = 50/331 = 0.15
Moles of NaI = 30/150 = 0.2
Ratio of moles is 1:2
So NaI is limiting
Limited to 0.2/2 = 0.1 mole of Pb(NO3)2
Excess = 0.15 - 0.1 = 0.05 mole
Mass remains = 0.05x331 = 16.55 grams
Moles of NaNO3 formed = Moles of NaI reacted = 0.2
Mass = 0.2x85 = 17 grams
Moles of PbI2 formed = Moles of Pb(NO3)2 reacted = 0.1
Mass = 0.1x461 = 46.1 grams
If 12 grams of NaNO3 actually formed in the reaction,
percent yield = 12/17x100% = 70.6%
Answer:
Explanation:
Moles of Pb(NO3)2 = mass/molecular mass
= 50.0 grams/(207.20*1 + 14.01*2 + 16*6)
= 50.0 grams/331.22
= 0.15 moles
Moles of NaI
= 30/(22.99+126.9)
= 30/149.89
= 0.2 Moles
A. NaI is less 2x Pb(NO3)2 so NaI is the limiting reagent.
B. The ratio is 1 to 2 so there is 0.15 - 0.2/2 = 0.05 mole
or 16.78 grams of Pb(NO3)2 left.
C. As NaI is limiting, only 0.2 Moles of NaNO3 is formed.
Mass = Moles * Molecular Mass
Molecular Mass of NaNO3 can be calculated as:
Na - 22.99
N - 14.01
O - 3(16) = 48
23+14+48 = 85gram / mole
Thus, Mass = 0.2*85 = 17 gram of NaNO3
Mass is conserved in a chemical reaction.
Mass of PbI2 can be calculated as:
50+30-16.78-17
= 46.3 gram of PbI2
Mass =
12.75
Thus, 12.75g of Sodium Nitrate can be formed