The answer is "sea stack" or the fourth option. Sea stacks are tall pieces of land in the ocean that had been eroded all the way to look like a stack of rocks. Sea stacks look like this:
Hope this helps!
The concentration of gallium in kilograms per cubic meter is equal to the calculated mass of gallium per cubic meter.
To determine the concentration of gallium in kilograms per cubic meter, we need to convert the concentration from atomic percent (at%) to kilograms per cubic meter.
The atomic fraction is the ratio of the number of gallium atoms to the total number of atoms in the silicon-gallium mixture.
We need to know the atomic masses of gallium and silicon. The atomic mass of gallium is 69.72 g/mol, and the atomic mass of silicon is 28.09 g/mol.
The atomic fraction of gallium can be calculated using the formula:
Atomic fraction of gallium = (Concentration of gallium in at%) / (Atomic mass of gallium) / [(Concentration of gallium in at%) / (Atomic mass of gallium) + (Concentration of silicon in at%) / (Atomic mass of silicon)]
Plugging in the given values:
Atomic fraction of gallium = (%) / (69.72 g/mol) / [(at%) / (69.72 g/mol) + (100 - ) at% / (28.09 g/mol)]
Now, let's convert the atomic fraction to the number of gallium atoms per cubic meter. We can use Avogadro's number, to make this conversion.
Number of gallium atoms per cubic meter = Atomic fraction of gallium × Avogadro's number.
Mass of gallium per cubic meter = Number of gallium atoms per cubic meter × (Atomic mass of gallium / 1000)
Therefore, the concentration of gallium in kilograms per cubic meter is equal to the calculated mass of gallium per cubic meter.
Learn more about Concentration here;
#SPJ12
The concentration of gallium in kilograms per cubic meter can be calculated using the atomic mass of gallium and Avogadro's number.
To calculate the concentration of gallium in kilograms per cubic meter, we can use the atomic mass of gallium and Avogadro's number. The concentration in kilograms per cubic meter can be found using the formula:
Concentration (kg/m³) = Concentration (% by mass) x Density (g/cm³) x Atomic Mass (g/mol) / 1000 x Avogadro's Number
First, convert the concentration from at% (atomic percent) to % by mass. Since gallium has an atomic mass of 69.7 g/mol, we can use this value to find the concentration in kilograms per cubic meter.
#SPJ3
Since Destiny is mostly interested in higher return, he will hence most likely invest in bonds with very high risk rate. Hence, Destiny will most likely be interested in Junk bond.
Therefore, Destiny will most likely be interested in a Junkbond.
Learn more:brainly.com/question/17405470?referrer=searchResults
Options:
- Saving bonds
- Corporate bonds
- Junk bonds
- Municipal bonds
Answer: Junk bonds
Answer:
See below
Explanation:
This is a simple reaction.
Calcium and chlorine molecule are combined to get calcium chloride.
Ca + Cl₂ → CaCl₂
Hope this helped!