Answer:
Time=2.72 seconds
Front wheel reactions= 1393 lb
Rear wheel reactions= 857 lb
Explanation:
The free body diagram is assumed to be the one attached here
The mass, m of the car is
where W is weight and g is acceleration due to gravity
Taking g as then
Considering equilibrium in x-axis
At point A using the law of equilibrium, the sum of moments is 0 hence
The normal reaction at B is therefore
Consider equilibrium in y-axis
To find time that the car takes to a speed of 10 ft/s
Using kinematic equation
V=u+at
10=0+3.68t
Answer:
73.24 K byte
Explanation:
Assuming that
N = total number of samples
N = 10 * 5kHz
N = 50*10^3
Also, the total number of bits, T
T = 12 * N
T = 12 * 50*10^3
T = 600 * 10^3
And then, finally, the total number of byte,
B = 600*10^(3/8)
B = 75*10^3 byte
75*10^3 byte = 75*10^3/1024 kilo byte
And on converting to decimal, we will have
= 73.24 K byte
Therefore, the memory required = 73.24 K byte
24Ω
When resistors are connected in parallel, the reciprocal of their combined resistance, when read with a DMM (Digital Multimeter - for measuring various properties of a circuit or circuit element such as resistance...) is the sum of the reciprocals of their individual resistances.
For example if two resistors of resistances R₁ and R₂ are connected together in parallel, the reciprocal of their combined resistance Rₓ is given by;
=
+
Solving for Rₓ gives;
=
------------------(i)
From the question;
Let
R₁ = resistance of first resistor = 40Ω
R₂ = resistance of second resistor = 60Ω
Now,
To get their combined or total resistance, Rₓ, substitute these values into equation (i) as follows;
=
=
= 24 Ω
Therefore, the total resistance is 24Ω
Answer:
24 ohms
Explanation:
pf
hope this helped :)
God bless you!!!!
Answer:
558.1918 kilocalories = 558191.8 calories
Explanation:
Data provided in the question:
Atmospheric pressure = 84.6 KPa
Mass of water, m = 900 g = 0.90 kg
Temperature = 15°C
Now,
Temperature at 84.6 KPa = 94.77°C
Therefore,
Heat energy required = m(CΔT + L)
here,
C is the specific heat of the water = 4.2 KJ/kg.°C
L = Latent heat of water = 2260 KJ/kg
Thus,
Heat energy required = 0.90[ 4.2 × (94.77 - 15) + 2260 ]
= 2335.53 KJ
also,
1 KJ = 0.239 Kilocalories
Therefore,
2335.53 KJ = 0.239 × 2335.53 Kilocalories
= 558.1918 kilocalories = 558191.8 calories
Answer:
I = Line Current = 242.58 A
Q = Reactive Power = 41.5 kVAr
Explanation:
Firstly, converting 100 hp to kW.
Since, 1 hp = 0.746 kW,
100 hp = 0.746 kW x 100
100 hp = 74.6 kW
The power of a three phase induction motor can be given as:
where,
P in = Input Power required by the motor
V = Line Voltage
I = Line Current
Cosα = Power Factor
Now, calculating Pin:
a) Calculating the line current:
b) Calculating Reactive Power:
The reactive power can be calculated as:
Q = P tanα
where,
Q = Reactive power
P = Active Power
α = power factor angle
Since,
Therefore,
Answer:
Explanation:
mole fraction of propane after passing through the separator is
mole fractions of ethane and methane
after passing through separator are:
Change in partial pressures then can be written as:
where
and
are mole fractions after and before passing through the separator
Hence,
Answer:
an attachment is below
Explanation:
1) the formula for damping coefficient id for RLC series circuit.
For \xi =0 you can make c=0 but inductor will still have some capacitance.
2) the responses of critically damped system and under damped system are shown with comments on their time response.
4) There can be many different answers to this question, but the 4 I have mentioned are the most important parameters we need to know about an unknown op-amp if we are to use it in our circuit.
Hope it answers all your questions.