Answer: As an object falls its potential energy decreases, while its kinetic energy increases. The decrease in potential energy is exactly equal to the increase in kinetic energy.
Explanation:
The equation is not balanced because the number of atoms of Oxygen present in the reactants and product sides are not equal
The equation being referred to in the question can be written properly as
S + 3O₂ → SO₃
To determine whether the equation is balanced or not
We will check if the coefficient in the equation gives equal numbers of atoms for each element in the reactants and product
S = 1
O = 6
S = 1
O = 3
We can observe that, the coefficient does not give equal number of atoms for the element, Oxygen (O), in the reactants and product sides
∴ The equation is NOT balanced
Hence, the equation is not balanced because the number of atoms of Oxygen present in the reactants and product sides are not equal
Learn more here: brainly.com/question/24943155
Answer:
This equation is not balanced because you don't have the same amount of each element on each side of the chemical reaction. The balanced equation is:
2 S + 3 ⇒ 2
Explanation:
The law of conservation of matter states that since no atom can be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.
Then, you must balance the chemical equation. For that, you must first look at the subscripts next to each atom to find the number of atoms in the equation. If the same atom appears in more than one molecule, you must add its amounts.
The coefficients located in front of each molecule indicate the amount of each molecule for the reaction. This coefficient can be modified to balance the equation, just as you should never alter the subscripts.
By multiplying the coefficient mentioned by the subscript, you get the amount of each element present in the reaction.
Then, taking into account all of the above, you can determine the amount of elements on each side of the equation:
Left side: 1 sulfur S and 6 oxygen O (coefficient 3 multiplied by sub-index 2)
Right side: 1 sulfur S and 3 oxygen O (subindice value)
As you can see, you have the same amount of sulfur on both sides of the equation but the amount of oxygen is different. This indicates that the chemical equation is not balanced. To balance it, as the amount of sulfur is the same, the amount of oxygen must be balanced, which is different on each side of the reaction.
A simple way is to balance the equation is to multiply the product by 2, that is, add a coefficient 2 in front of the SO3 molecule, the reaction being as follows:
S + 3 ⇒ 2
Now the amount of elements on each side of the equation is:
Left side: 1 sulfur S and 6 oxygen O (coefficient 3 multiplied by subindice 2)
Right side: 2 sulfur S and 6 oxygen O (coefficient 2 multiplied by subindice 3)
The oxygen is now balanced, but the amount of sulfur on both sides of the reaction varies. To balance the quantities of sulfur, as now on the right side you have an amount of 2, you can add the coefficient to sulfur. The chemical equation is as follows:
2 S + 3 ⇒ 2
Now the amount of elements on each side of the equation is:
Left side: 2 sulfur S and 6 oxygen O (coefficient 3 multiplied by subindice 2)
Right side: 2 sulfur S and 6 oxygen O (coefficient 2 multiplied by subindice 3)
Finally you have the same amount of sulfur and oxygen on both sides of the reaction. So the chemical equation is finally balanced.
Answer:
Ne
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of O2 = 5g
Mass of C2H6 = 5g
Mass of CO2 = 5g
Mass of Ne = 5g
Step 2:
Determination of the number of mole of each gas:
For O2:
Mass of O2 = 5g
Molar Mass of O2 = 16x2 = 32g/mol
Number of mole of O2 =?
Number of mole = Mass/Molar Mass
Number of mole of O2 = 5/32
Number of mole of O2 = 0.156 mole
For C2H6:
Mass of C2H6 = 5g
Molar Mass of C2H6 = (12x2) + (6x1) = 24 + 6 = 30g/mol
Number of mole of C2H6 =?
Number of mole = Mass/Molar Mass
Number of mole of C2H6 = 5/30
Number of mole of C2H6 = 0.167 mole
For CO2:
Mass of CO2 = 5g
Molar Mass of CO2 = 12 + 16x2 = 12 + 32 = 44g/mol
Number of mole of CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5/44
Number of mole of CO2 = 0.114 mole
For Ne:
Mass of Ne = 5g
Molar Mass of Ne = 20g/mol
Number of mole of Ne =?
Number of mole = Mass/Molar Mass
Number of mole of Ne = 5/20
Number of mole of Ne = 0.25 mole
Step 3:
Determination of the volume occupied by the each gas.
1 mole of a gas occupy 22.4L at stp.
For O2:
0.156 mole will occupy = 0.156 x 22.4 = 3.49 L
For C2H6:
0.167 mole Will occupy = 0.167 x 22.4 = 3.74 L
For CO2:
0.114 mole Will occupy = 0.114 x 22.4 = 2.55 L
For Ne:
0.25 mole will occupy = 0.25 x 22.4 = 5.6 L
From the calculations made above, Ne has the largest volume
From which layer of the atmosphere do particles of air escape into space? will give brainly
Answer: The layer from where particles of air escape into space is exosphere.
Explanation:
The atmosphere is divided into layers. There are 5 main layers of atmosphere, which are: Troposphere, Stratosphere, Mesosphere, Thermosphere and Exosphere.
Hence, the layer from where particles of air escape into space is exosphere.
Answer:
Exosphere
Explanation:
I took the k12 test.