Answer:
The solution in the buret, during a titration is called titrant.
Explanation:
A titration is a useful process, that makes you know the concentration of a solution. A titrant solution (burette) is evaluated against a titrand to control the pH changes against the volume aggregate. Only a strong acid with a strong base, a strong base with a strong acid, a weak acid with a strong base and a weak base with strong acid are valued.
When the pH reaches the equivalence point, it is said that the normality of the acid by the milliequivalents, is equal to the basic normality by its milliequivalents. In conclusion, the entire base / acid became its conjugate pair.
To check this sudden change in pH, a substance is used, called Indicator that changes the color of the titrand (analyte).
In a titration analysis, the substance in the buret is called the 'titrant'. It is used to react with the analyte, the sample solution whose concentration we're measuring. The goal is to reach the endpoint, the point when a distinct visual change indicates that the titrant has completely reacted with the analyte.
In a titration analysis, the solution in the buret is called the titrant. This solution contains a known concentration of a substance. During a titration, this titrant is added incrementally to a sample solution, called the analyte, which contains the substance whose concentration is to be measured. The titrant and analyte undergo a chemical reaction of known stoichiometry.
By measuring the volume of the titrant solution needed to completely react with the analyte, scientists can calculate the concentration of the analyte. This point where the titrant has completely reacted with the analyte is termed the equivalence point of the titration. The process of adding the titrant is halted when a distinct change is visually detected in the solution - this could be a color change, for example. This is known as the end point.
#SPJ3
Answer is: D. substitution.
Substitution reaction or single displacement reaction is a chemical reaction in which one functional group in a chemical compound is replaced by another functional group.
Balanced chemical reaction: CH₃Br(aq) + OH⁻(aq) → CH₃OH(aq) + Br⁻(aq).
In this balanced chemical reaction hydroxy group OH⁻ replaced one atom of bromine (Br⁻) in methyl bromide (CH₃Br).
Answer : The correct option is, (D) Substitution reaction.
Explanation :
Addition reaction : It is a type of reaction in which a molecule combined with the another molecule to give a new larger molecule.
The general representation of this reaction is,
Condensation reaction : It is a type of reaction in which two molecules combine to form a larger molecule and also producing a smaller molecule such as water.
Elimination reaction : It is a type of reaction in which the loss of elements from the starting material to form a double bond in the product.
The general representation of this reaction is,
Substitution reaction : It is a type of reaction in which one functional group is replaced by the another functional group.
The general representation of this reaction is,
(B and C are the two different functional groups)
In the given reaction, Br (functional group) is replaced by the hydroxide ion (functional group). So, this reaction is a substitution reaction.
Hence, the given reaction is a substitution reaction.
, C3H5
(OH)3
B. C2H2
, CH4
, CaCl2
, CaCN2
C. Ch3OCH3
, Ca3
(PO4
)2
, CO2
, H2CO3
D. C6H6
, C2H5OH, C6H5CH3
, C3H5
(NO3
)3
Answer;
D. C6H6, C2H5OH, C6H5CH3, and C3H5(NO3)3.
Explanation;
-Organic compound are chemical compounds in which one or more atoms of carbon are covalently linked to atoms of other elements, most commonly hydrogen, oxygen, or nitrogen, like the examples above in choice D. . Inorganic Compoundson the other hand, are compounds made from any elements except those compounds of carbon, such as CaSO4, CaCl2 and Ca3(PO4)2 in A, B and C respectively.
B. An electron has a neutral electrical charge.
C. An electron is much larger than an atom.
D. An electron is located inside the nucleus of an atom.
Answer: Option (A) is the correct answer.
Explanation:
An atom consists of three sub atomic particles. These particles are protons, electrons and neutrons.
Protons have a positive charge. Whereas neutrons have no charge. On the other hand, electrons have a negative charge.
Thus, we can conclude that out of the given options, an electron has a negative electrical charge is the correct statement.
Answer :
(a) The volume percent is, 50.63 %
(b) The mass percent is, 52.69 %
(c) Molarity is, 9.087 mole/L
(d) Molality is, 17.947 mole/L
(e) Moles fraction of ethylene glycol is, 0.244
Explanation : Given,
Density of ethylene glycol = 1.114 g/mL
Molar mass of ethylene glycol = 62.07 g/mole
Density of water = 1.00 g/mL
Density of solution or mixture = 1.070 g/mL
According to the question, the mixture is made by mixing equal volumes of ethylene glycol and water.
Suppose the volume of each component in the mixture is, 1 mL
First we have to calculate the mass of ethylene glycol.
Now we have to calculate the mass of water.
Now we have to calculate the mass of solution.
Mass of solution = Mass of ethylene glycol + Mass of water
Mass of solution = 1.114 + 1.00 = 2.114 g
Now we have to calculate the volume of solution.
(a) Now we have to calculate the volume percent.
(b) Now we have to calculate the mass percent.
(c) Now we have to calculate the molarity.
(d) Now we have to calculate the molality.
(e) Now we have to calculate the mole fraction of ethylene glycol.
Answer:
-196 kJ
Explanation:
By the Hess' Law, the enthalpy of a global reaction is the sum of the enthalpies of the steps reactions. If the reaction is multiplied by a constant, the value of the enthalpy must be multiplied by the same constant, and if the reaction is inverted, the signal of the enthalpy must be inverted too.
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
S(s) + O₂(g) → SO₂(g) ΔH = -297 kJ (inverted and multiplied by 2)
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
2SO₂(g) → 2S(s) + 2O₂(g) ΔH = +594 kJ
-------------------------------------------------------------
2S(s) + 3O₂(g) + 2SO₂(g) → 2SO₃(g) + 2S(s) + 2O₂(g)
Simplifing the compounds that are in both sides (bolded):
2SO₂(g) + O₂(g) → 2SO₃(g) ΔH = -790 + 594 = -196 kJ
The enthalpy of the reaction where sulfur dioxide is oxidized to sulfur trioxide is -395 kJ.
The calculation of the enthalpy change of the reaction in which sulfur dioxide is oxidized to sulfur trioxide involves Hess's Law, which states that the enthalpy change of a chemical reaction is the same whether it takes place in one step or several steps. This can be solved by comparing the enthalpy changes given in the two reactions presented.
First, consider the reactions given:
2S(s) + 3O₂(g) → 2SO₃(g), ΔH = -790 kJ
S(s) + O₂(g) → SO₂(g), ΔH = -297 kJ
From these reactions, it is seen that the first reaction can be re-written as:
2SO₂(g) + O₂(g) → 2SO₃(g), ΔH = -790 kJ
However, this reaction contains two moles of SO₂ whereas the reaction in question only requires one mole. Thus, the enthalpy change for the reaction becomes: ΔH = -790 KJ / 2 = -395 kJ.
#SPJ3