Answer: The chemical equations are given below.
Explanation:
The chemical equation for the reaction of lead nitrate and sodium hydroxide follows:
By Stoichiometry of the reaction:
1 mole of aqueous solution of lead nitrate reacts with 2 moles of aqueous solution of sodium hydroxide to produce 1 mole of solid lead hydroxide and 2 moles of aqueous solution of sodium nitrate.
The chemical equation for the reaction of lead hydroxide and hydroxide ions follows:
By Stoichiometry of the reaction:
1 mole of lead hydroxide reacts with 2 moles of aqueous solution of hydroxide ions to produce 1 mole of aqueous solution of tetra hydroxy lead (II) complex
Hence, the chemical equations are given above.
The balanced chemical equation for each of the reactions is as follows:
A chemical equation is said to be balanced when the number of atoms of each element on both sides of the equation are the same.
According to this question, when aqueous sodium hydroxide is added to a solution containing lead(II) nitrate, a solid precipitate forms. The balanced equation are as follows:
Pb(NO3)2(aq) + 2NaOH(aq) → 2 NaNO3(aq) + Pb(OH)2(s)
Also, when additional aqueous hydroxide is added the precipitate redissolves forming a soluble Pb(OH)42-(aq) complex ion. The balanced equation is as follows:
Pb(OH)2 + 2OH- → Pb(OH)42-
Learn more about balanced equation at: brainly.com/question/1301642
i. two
ii. three
iii. six
iv. eight
(b) How many atoms are directly bonded to the central atom in a trigonal bipyramidal molecule?
i. three
ii. four
iii. five
iv. six
(c) How many atoms are directly bonded to the central atom in an octahedral molecule?
i. three
ii. four
iii. six
iv. eight
Answer:
a) ii
b)iii
c)iii
Explanation:
three atoms directly bonded then only it is possible to achieve trigonal planar
trigonal bipyramidal means five atoms should attach to central atom
for octahedral six atoms must directly connected to central atom
Answer:tell the instructor of the lab
Explanation:
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
(ii) Silver iodate
a. Calculate the activity coefficients of the ions
b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions
b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
liters of the 40% solution and
liters of the 25% solution must be mixed to obtain a 28% solution of H2SO4.
(Round to the nearest tenth, if necessary.)
Answer:
16 liters of the solution with 40% concentration must be mixed with 62 liters of the solution with 25% concentration in order to obtain 78 liters, 25% concentration solution.
Explanation:
Let the required volume of solution 1 be represented by x.
The required volume of solution 2 would then be 78-x.
The number of moles of solution 1 that would be required = 0.4x
The number of moles of solution 2 that would be required = 0.25(78-x)
The number of moles of the final mixture = 78 x 0.28 = 21.84
moles of solution 1 + moles of solution 2 = moles of final mixture
0.4x + 0.25(78 - x) = 21.84
0.4x + 19.5 - 0.25x = 21.84
0.4x - 0.25x = 21.84 - 19.5
0.15x = 2.34
x = 15.6 liters
To the nearest tenth = 16 liters
Liters of 40% solution needed = 16 liters
Liters of 25% solution needed = 78 - 16 = 62 liters.
Hence, 16 liters of the solution with 40% concentration must be mixed with 62 liters of the solution with 25% concentration in order to obtain 78 liters, 25% concentration solution.
Answer:
0,12 μmol/L of MgF₂
Explanation:
Preparation of solutions is a common work in chemist's life.
In this porblem says that you measure 0,00598 μmol of MgF₂ in 50,0 mL of water and you must calculate concentration in μmol/L
You have 0,00598 μmol but not Liters.
To obtain liters you sholud convert mL to L, knowing 1000mL are 1 L, thus:
50,0 mL (1L/1000mL) = 0,05 L of water.
Thus, concentration in μmol/L is:
0,00598 μmol / 0,05 L = 0,12 μmol/L -The problem request answer with two significant digits-
I hope it helps!
Considering the formation of a chemical formula, the chemical formula is Li₂O.
Cations (positivelycharged ions) and anions (negatively charged ions) combine to form ionic compounds, which must be electrically neutral. Therefore, the cations and anions must combine in such a way that the net charge contributed by the total number of cations exactly cancels the net charge contributed by the total number of anions.
To form the chemical formula:
Lithium (Li) has a charge of +1, and oxygen has a charge of -2. Taking into account the above, the chemical formula is Li₂O.
Answer:
Lithium formula=Li+
Oxygen formula=O2(2-)
Explanation:
Quick note: These kinds of formula are really easy to google. Next time, google the chemical name, include the charge and include "formula" and you should get the answer.