89.6 L of O₂
The balanced chemical equation is as,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
As at STP, one mole of any gas (Ideal gas) occupies exactly 22.4 L of Volume. Therefore, According to equation,
44 g ( 1 mol) CO₂ is produced by = 44.8 L (2 mol) of O₂
So,
88 g CO₂ will be produced by = X L of O₂
Solving for X,
X = (88 g × 44.8 L) ÷ 44 g
X = 89.6 L of O₂
True or False ?
Answer:
0.9852 moles of CaO
Explanation:
Reaction equation for the decomposition of CaCO₃:
CaCO₃ → CaO + CO₂
The question asks how many moles of CaO form when 98.60g of CaCO₃ decompose.
We can see from the reaction equation that for every mol of CaCO₃, one mol of CaO will be produced (molar ratio 1:1)
_____________________________________________________
So first we need to calculate how many moles are the 98.60g of CaCO₃:
Molar Mass of CaCO₃ = molar mass Ca + molar mass C + 3 * molar mass O
= 40.078 + 12.011 + 3 * 15.999 = 100.086 g/mol
Moles of CaCO₃ = mass CaCO₃ / molar mass CaCO₃
Moles of CaCO₃ = 98.60 g / 100.086 g/mol = 0.9852 moles CaCO₃
________________________________________________________
As we said before for every mol of CaCO₃, one mol of CaO is produced.
So the decomposition of 0.9852 moles of CaCO₃ will produce 0.9852 moles of CaO.
Hey I think it is going to be 0986 moles. Cuz we can see that no. of moles of CaCO3 which will decompose is equivalent to the no. of CaO . Now it's just the matter of finding the no. of moles of CaCO3 .
no.of moles=mass /relative molecular mass
b.As reactants form products, the potential energy increases.
c.Thermal energy is transferred from the product to the reacting substances.
d.Thermal energy is transferred from the surroundings to the reacting substances.
Answer:
As reactants form products, the potential energy decreases.
Explanation:
Edge
Answer:
A. Metal
Explanation:
Hope this helps! :)
If this wasn't what you were looking for please don't hesitate to comment again! Have a nice day/night! :)
Answer:
Metal
Explanation:
they deleted my answer so I am putting it back sorry