•neutron
•proton
•electron
•atom
Answer: A Neutron.
I know this is correct. Thank's and yw :3
b. False
===========================================================
Explanation:
Consider a mass of 10 kg, so m = 10
Let's say we apply a net force of 20 newtons, so F = 20
The acceleration 'a' is...
F = ma
20 = 10a
20/10 = a
2 = a
a = 2
The acceleration is 2 m/s^2. Every second, the velocity increases by 10 m/s.
---------------
Now let's double the net force on the object
F = 20 goes to F = 40
m = 10 stays the same
F = ma
40 = 10a
10a = 40
a = 40/10
a = 4
The acceleration has also doubled since earlier it was a = 2, but now it's a = 4.
---------------
In summary, if you double the net force applied to the object, then the acceleration doubles as well.
Acceleration is directly proportional to the net force on an object, and inversely proportional to its mass.
So if an object's mass stays the same while the net force on it doubles, then its acceleration will also double.
We don't know anything about the "trials". This sounds like it might be a follow-up to a lab experiment that was performed when we weren't there.
We also don't know anything about "question 1".
doorbell
computer
on/off switch
B. size.
C. location.
D. speed.
E. temperature.
The property that distinguishes the potential energy from kinetic energy are the shape and position of the object, letter C. Potential energy is directly proportional with mass times gravity times the height of the object at rest. On the other hand, kinetic energy is directly proportional with half of the square of the velocity times the mass of the object in motion.