the fish release gas so that can go up above the water breath and then go back into the water
When Mendel crossed purebred purple flowering plants (PP) with purebredwhite flowering plants (pp), the flower colors of the resulting offspring is: 100 percent purple.
Therefore, it can be said that when Mendel crossed purebred purple flowering plants (PP) with purebred white flowering plants (pp), the flower colors of the resulting offspring is: 100 percent purple.
Learn more about Mendel cross at: brainly.com/question/4441612
OBJECTIVES
Observe different types of cells.
Use the microscope. These supplies and equipment are needed:
prepared slide of muscle tissue
prepared slide of some internal organ such as the kidney, liver, or heart
prepared slide of erythrocytes, or leukocytes (from blood)
Follow these directions and complete the activities.
1. Place one of the prepared slides of animal tissue on the stage of the microscope.
2. Focus the microscope on low power. Then change to the high power objective. Focus on the tissue, and note the cells.
3. On a separate sheet of paper, draw an individual cell that you see in the tissue. Note the shape of the cell and its other distinctive characteristics.
What do you think the function of this cell might be?
4. Repeat Steps 1 and 2 using the other prepared slides.
5. On a separate sheet of paper, draw individual cells from the other prepared slides examined.
What do you think the functions of the other cells drawn might be?
If all of the different kinds of cells which you observed had been taken from the same organism or individual, would they have all had the same genetic information?
Consider specialization: What biological concept or occurrence is demonstrated by the different kinds of cells which were observed?
Why is it important?
Answer: 434 words total. Left two questions blank (they are underlined) so youll probs need to fill it in. I also suggest putting it into your own words so if they run it through a plagerism checker this doesnt pop up. I hope this helps tho.
Introduction:
Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the body’s hereditary material and can make copies of themselves. Cells have many parts, each with a different function. Some of these parts, called organelles, are specialized structures that perform certain tasks within the cell.
Materials:
• Microscope
• Prepared slide of muscle tissue
• Prepared slide of some internal organ such as the kidney, liver, or heart
• Prepared slide of erythrocytes, or leukocytes (from blood)
Instructions:
1. Place one of the prepared slides of animal tissue on the stage of the microscope.
2. Focus the microscope on low power. Then change to the high-power objective. Focus on the tissue, and note the cells.
3. On a separate sheet of paper, draw an individual cell that you see in the tissue. Note the shape of the cell and its other distinctive characteristics.
-What do you think the function of this cell might be?
4. Repeat Steps 1 and 2 using the other prepared slides.
5. On a separate sheet of paper, draw individual cells from the other prepared slides examined.
Questions:
What do you think the functions of the other cells drawn might be?
- (i think this differs on person to person so may need to do it yourself)
If all of the different kinds of cells which you observed had been taken from the same organism or individual, would they have all had the same genetic information?
- Yes, the cells will have the same genetic information. However, the particular combination of genes that are turned on (expressed) or turned off (repressed) dictates cellular morphology (shape) and function. Essentially meaning that though the cells share the same genetic information they do not necessarily share the same functions.
Consider specialization: What biological concept or occurrence is demonstrated by the different kinds of cells which were observed?
- Though these cells have the same DNA, they all have different phenotypes. The phenotypes are different because the cells appear different under the microscope. The cells do this by expressing different genes at different rates. For example, the blood cell is expressing the gene to make hemoglobulin while the other cells are probably expressing different genes that allow them to be specialized. Cells differentiate which means that they are becoming more specialized. Epigenetics focuses on how cells become more specialized.
Why is it important?
- This is important because it allows different parts of the body to carry out their crucial functions necessary for the whole body to run properly.
This is important because it allows different parts of the body to carry out their crucial functions necessary for the whole body to run properly.
Introduction: Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the body’s hereditary material and can make copies of themselves.
Materials: Microscope, Prepared slide of muscle tissue, Prepared slide of some internal organ such as the kidney, liver, or heart , Prepared slide of erythrocytes, or leukocytes (from blood).
Instructions: 1. Place one of the prepared slides of animal tissue on the stage of the microscope.
2. Focus the microscope on low power. Then change to the high-power objective. Focus on the tissue, and note the cells.
3. On a separate sheet of paper, draw an individual cell that you see in the tissue. Note the shape of the cell and its other distinctive characteristics.
-What do you think the function of this cell might be?
4. Repeat Steps 1 and 2 using the other prepared slides.
5. On a separate sheet of paper, draw individual cells from the other prepared slides examined.
- Yes, the cells will have the same genetic information. However, the particular combination of genes that are turned on (expressed) or turned off (repressed) dictates cellular morphology (shape) and function. Essentially meaning that though the cells share the same genetic information they do not necessarily share the same functions.
Consider specialization: What biological concept or occurrence is demonstrated by the different kinds of cells which were observed?
- Though these cells have the same DNA, they all have different phenotypes. The phenotypes are different because the cells appear different under the microscope. The cells do this by expressing different genes at different rates. For example, the blood cell is expressing the gene to make hemoglobulin while the other cells are probably expressing different genes that allow them to be specialized. Cells differentiate which means that they are becoming more specialized. Epigenetics focuses on how cells become more specialized.
To learn more about microscope, click here.
#SPJ3
Need the correct answer
Urgent
Will give the brainliest
Answer:
1) is A
2) is D
3) is D
Explanation:
The Krebs Cycle occurs in the matrix of the mitochondrion of a eukaryotic cell, which is a part of the process of cellular respiration, generating energy for the cell.
The Krebs cycle, also known as the citric acid cycle or the tricarboxylic acid (TCA) cycle, takes place in the matrix of the mitochondrion of a eukaryotic cell. This cycle is a crucial part of cellular respiration, the process by which cells generate energy. During the Krebs cycle, the pyruvate molecules derived from glucose are oxidized and, in turn, produce ATP (adenosine triphosphate), the main source of cellular energy, and other high-energy compounds. The matrix of the mitochondrion provides the necessary environment and enzymes for this cycle to occur effectively.
#SPJ6
Answer:
runoff;sewage
Explanation: