Answer: a) work done = 3946429.5 J
b) work done = 943.22 nutritional calories
Explanation:
Answer
given,
Tension of string is F
velocity is increased and the radius is not changed.
the string makes two complete revolutions every second
consider the centrifugal force acting on the stone
=
now centrifugal force is balanced by tension
T =
From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.
When radius is not changing velocity is increasing means tension will also increase in the string.
Answer:
ifyou have a wre connect you should not have to connected
i think that is the answer
To solve this problem we will apply the concepts related to the change in length in proportion to the area and volume. We will define the states of the lengths in their final and initial state and later with the given relationship, we will extrapolate these measures to the area and volume
The initial measures,
(Surface of a Cube)
The final measures
Given,
Now applying the same relation we have that
The relation with volume would be
Volume of the cube change by a factor of 2.83
Answer:
The magnitude and direction of the magnetic field is 0.009014 T in the negative y direction.
Explanation:
Given that,
Speed
Acceleration
We need to calculate the magnetic field
Using formula of magnetic field
....(I)
Using newton's second law
....(II)
From equation (I) and (II)
Put the value into the formula
We need to calculate the direction of the field
Using the right hand rule, point the right hand fingers along the velocity which is in the positive z direction.
Now, if we curl the fingers along the direction of magnetic field that is in the negative y direction, then the thumb will point in the positive x direction.
Hence, The magnitude and direction of the magnetic field is 0.009014 T in the negative y direction.
Answer:
The value of g is
Explanation:
From the question we are told that
The mass of the weight is
The spring constant
The second harmonic frequency is
The number of oscillation is
The time taken is
Generally the frequency is mathematically represented as
At second harmonic frequency the length of the string vibrating is equal to the wavelength of the wave generated
Noe from the question the vibrating string is just half of the length of the main string so
Let assume the length of the main string is
So
The velocity of the vibrating string is mathematically represented as
Where T is the tension on the string which can be mathematically represented as
So
Then
=>
=>
=>
substituting values
Generally the period of oscillation is mathematically represented as
=>
The period can be mathematically evaluated as
substituting values
Therefore
so
substituting for L
=>
When two bodies come into close touch with one another, a collision occurs. In this instance, the two bodies quickly exert forces on one another. The collision changes the energy and momentum of the bodies that are interacting.
Briefing
the system's initial kinetic energy, KEi, is equal to 0.5 * 4 * 1.8 2 plus 0.5 * 6 * 0.2 2 J.
KEi = 6.6 J
The system's ultimate kinetic energy, KEf
, following the collision is equal to 0.5 * 4 * 0.6 + 0.5 * 6 * 1.4 J.
KEf = 6.6 J
since KEi = KEf
Perfectly elastic is the collision
the appropriate response is A) completely elastic.
Visit: to learn more about absolutely elastic.
#SPJ4