Answer:
The torque on the coil is
Solution:
No. of turns per meter length, n = 1400 turns\m
Current, I = 4.9 A
Angle,
No. of turns of coil, N = 42 turns
Area, A =
Current in the coil, I' = 0.45 A
Now,
To calculate the exerted torque on the coil:
The magnetic field, B produced inside the coil is given by:
Now, the torque exerted is given by:
Answer:
Explanation:
Given:
A long solenoid having
no. of turns per meter, n =1400
current, I = 4.9 A
A small coil of wire placed inside the solenoid
angle of orientation with respect to the axis of the solenoid, °
no. of turns in the coil, N = 42
area of the coil,
current in the coil,
We have for torque:
.......................(1)
∵................................(2)
where:
B= magnetic field
The permeability of free space =
Substitute B from eq. (2) into eq. (1) we have:
putting the respective values in above eq.
As you approach the police car with blaring siren, you hear a change in pitch and frequency. The apparent pitch changes as a result of the Doppler effect. Frequency determines pitch; frequency and wavelength are inversely proportional. You wouldn't "hear" either one. The result is pitch.
D) pitch and frequency.
Answer:
The correct answer would be frequency, intensity, and amplitude.
It can be explained with the help of Doppler effects which states that the frequency or wavelength of sound changes (increases or decreases) as source and observer move towards or away from each other.
Due to this effect, the frequency and intensity of siren increase as we move towards the siren.
In addition, amplitude also increases as we move towards the source of the sound and decreases as the observer moves away from the source.
Answer:
They collide, couple together, and roll away in the direction thatthe 2m/s car was rolling in.
Explanation:
We should start off with stating that the conservation of momentum is used here.
Momentum = mass * speed
Since, mass of both freight cars is the same, the speed determines which has more momentum.
Thus, the momentum of the 2 m/s freight car is twice that of the 1 m/s freight car.
The final speed is calculated as below:
mass * (velocity of first freight car) + mass * (velocity of second freight car) = (mass of both freight cars) * final velocity
(m * V1) + (m * V2) = (2m * V)
Let's substitute the velocities 1m/s for the first car, and - 2m/s for the second. (since the second is opposite in direction)
We get:
solving this we get:
V = - 0.5 m/s
Thus we can see that both cars will roll away in the direction that the 2 m/s car was going in. (because of the negative sign in the answer)
Answer:
Explanation:
As we know that the combination is maintained at rest position
So we will take net torque on the system to be ZERO
so we know that
here we will have
so we have
so we have
The concept of torques and equilibrium is used to calculate the pulling force on the larger flywheel, which is found to be approximately 29.55 Newtons. This force will balance the system and prevent it from rotating.
To solve this problem, we need to understand the concept of torque and equilibrium. We know that torque (τ) is the rotational equivalent of linear force. It's calculated by the formula τ = force × radius. Thus, for the system to stay at equilibrium (not rotate), the torques need to balance each other out.
On the smaller flywheel, the torque τ₁ is given by the pulling force (F₁ = 50 N) and the radius (r₁ = 13 cm, or 0.13 m), hence τ₁ = F₁ × r₁ = 50 N x 0.13 m = 6.5 N.m.
In order for the system to stay at equilibrium, the same amount of torque needs to be applied to the larger flywheel. We already know the radius of the larger flywheel (r₂ = 22 cm, or 0.22 m). To keep the system at equilibrium, the pulling force F₂ on the larger flywheel should be such that the torque τ₂ = τ₁ = 6.5 N.m. From the formula τ = F × r, we can solve for F₂ as follows: F₂ = τ₂ / r₂ = 6.5 N.m / 0.22 m = 29.55 N, approximately. Therefore, a pulling force of about 29.55 N should be applied to the cord connected to the larger flywheel to prevent the system from rotating.
#SPJ3