To accelerate a shopping cart with a mass of 65kg at a rate of 0.3 m/sec2, you would need to exert a force of 19.5 Newtons, according to Newton's second law of motion.
The subject of this problem is physics, specifically the concept of force, mass, and acceleration within the domain of Newton's second law of motion. The law states that the force needed to accelerate an object is equal to the mass of the object multiplied by the desired acceleration.
Given the mass of the cart is 65 kilograms and the acceleration is 0.3 m/sec2, you can calculate the required force using the formula:
Force = mass * acceleration.
So, Force = 65 kg * 0.3 m/sec2 = 19.5 Newtons. Therefore, you would have to exert a force of 19.5 Newtons to accelerate the shopping cart at the specified rate.
#SPJ6
the rock morphs into a different rock depending on what type of rock you are talking about
here is it answer.....
Because the lamp filament is physically very small and dissipates a relatively large amount of power (say, 60W for a typical incandescent bulb), while the conductors which feed it are relatively large and of negligible resistance, so they dissipate very little power, for a relatively large conductor area. How hot a component gets from resistive heating is proportional to its power dissipation, and inversely proportional to its area/size.
Thus if you dissipate, say 60W of power in a tiny lamp filament, it will get hot enough to become (surprise !!) incandescent, while the conductors which supply it (which dissipate perhaps a fraction of a watt for many feet of conductor length) will experience no significant temperature rise.
In fact, applicable electrical codes mandate that circuit conductors be sized large enough and provided with appropriate overcurrent protection, so that no significant conductor heating can take place.
Calculate:
(a) the time to reach maximum height
(b) the maximum height above the base of the cliff reached by the
projectile
(c) thetotal time it is in the air
(d) the horizontal range of the projectile.
Answer:
a) 9.99 s
b) 538 m
c) 20.5 s
d) 1160 m
Explanation:
Given:
x₀ = 0 m
y₀ = 49.0 m
v₀ = 113 m/s
θ = 60.0°
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
a) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find t.
vᵧ = aᵧ t + v₀ᵧ
(0 m/s) = (-9.8 m/s²) t + (113 sin 60.0° m/s)
t ≈ 9.99 s
b) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find y.
vᵧ² = v₀ᵧ² + 2aᵧ (y − y₀)
(0 m/s)² = (113 sin 60° m/s)² + 2 (-9.8 m/s²) (y − 49.0 m)
y ≈ 538 m
c) When the projectile lands, y = 0 m. Find t.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (49.0 m) + (113 sin 60° m/s) t + ½ (-9.8 m/s²) t²
You'll need to solve using quadratic formula:
t ≈ -0.489, 20.5
Since negative time doesn't apply here, t ≈ 20.5 s.
d) When the projectile lands, y = 0 m. Find x. (Use answer from part c).
x = x₀ + v₀ₓ t + ½ aₓ t²
x = (0 m) + (113 cos 60° m/s) (20.5 s) + ½ (0 m/s²) (20.5 s)²
x ≈ 1160 m
B) erosion
C) volcano
D) landslide
Answer:
A) Mechanical energy is converted into sound energy.
Explanation:
Answer:
Mechanical Energy.
Explanation: