Answer:
at rest because time is passing and speed is still at 0
Explanation:
The energy equation, E=12mvx2+12kx2=12kA2, is a useful alternative relationship between velocity and position, especially when energy quantities are also required. If the problem involves a relationship among position, velocity, and acceleration without reference to time, it is usually easier to use the equation for simple harmonic motion, ax=d2xdt2=−kmx (from Newton’s second law) or the energy equation above (from energy conservation) than to use the general expressions for x, vx, and ax as functions of time. Because the energy equation involves x2 and vx2, it cannot tell you the sign of x or of vx; you have to infer the sign from the situation. For instance, if the body is moving from the equilibrium position toward the point of greatest positive displacement, then x is positive and vx is positive.
IDENTIFY the relevant concepts
Energy quantities are required in this problem, therefore it is appropriate to use the energy equation for simple harmonic motion.
SET UP the problem using the following steps
Part A
The following is a list of quantities that describe specific properties of the toy. Identify which of these quantities are known in this problem.
Select all that apply.
Select all that apply.
maximum velocity vmax
amplitude A
force constant k
mass m
total energy E
potential energy U at x
kinetic energy K at x
position x from equilibrium
Part B
What is the kinetic energy of the object on the spring when the spring is compressed 5.1 cm from its equilibrium position?
Part C
What is the potential energy U of the toy when the spring is compressed 5.1 cm from its equilibrium position?
Answer:
Part A
Mass = 50g
Vmax = 3.2m/s
Amplitude= 6cm
Position x from the equilibrium= 5.1cm
Part B
Kinetic energy = 0.185J
Part C
Potential energy = 0.185J
Explanation:
Kinetic energy = 1/2mv×2
Vmax = wa
w = angular velocity= 53.33rad/s
Kinetic energy = 1/2mv^2×r^2 = 0.185J
Part c
Total energy = 1/2m×Vmax^2= 0.256J
1/2KA^2= 0.256J
K= 142.22N/m (force constant)
Potential energy = 1/2kx^2
=1/2×142.22×0.051^2
= 0.185J
To find the kinetic energy of the toy, we need to use the energy equation for simple harmonic motion and the relationship between velocity and position. We can then substitute the known values to calculate the kinetic energy.
In this problem, we are given the amplitude (A) of the oscillation and the maximum velocity (vmax) achieved by the toy. We need to find the kinetic energy (K) of the toy when the spring is compressed 5.1 cm from its equilibrium position.
To solve for the kinetic energy, we can use the energy equation for simple harmonic motion: K = 1/2mvx2, where m is the mass of the object and vx is the velocity of the object at position x. The mass of the object is given as 50 g, which is equal to 0.05 kg.
Since we know the maximum velocity (vmax = 3.2 m/s), we can use the relationship between velocity and position in simple harmonic motion to find the velocity (vx) at a displacement of 5.1 cm from the equilibrium position. The velocity and position in simple harmonic motion are related by vx = ±ω√(A2 - x2), where ω is the angular frequency of the motion.
Substituting the known values into the equations, we can calculate the kinetic energy of the toy.
#SPJ3
Answer:
The time in which the pendulum does a complete revolution is called the period of the pendulum.
Remember that the period of a pendulum is written as:
T = 2*pi*√(L/g)
where:
L = length of the pendulum
pi = 3.14
g = 9.8 m/s^2
Here we know that L = 14.4m
Then the period of the pendulum will be:
T = 2*3.14*√(14.4m/9.8m/s^2) = 7.61s
So one complete oscillation takes 7.61 seconds.
We know that the pendulum starts moving at 8:00 am
We want to know 12:00 noon, which is four hours after the pendulum starts moving.
So, we want to know how many complete oscillations happen in a timelapse of 4 hours.
Each oscillation takes 7.61 seconds.
The total number of oscillations will be the quotient between the total time (4 hours) and the period.
First we need to write both of these in the same units, we know that 1 hour = 3600 seconds
then:
4 hours = 4*(3600 seconds) = 14,400 s
The total number of oscillations in that time frame is:
N = 14,400s/7.61s = 1,892.25
Rounding to the next whole number, we have:
N = 1,892
The pendulum does 1,892 oscillations between 8:00 am and 12:00 noon.
The question involves the concept of a simple pendulum whose number of swings is largely influenced by its length and the acceleration due to gravity. By determining the period of the pendulum, one can figure out the number of oscillations over a given time period. The pendulum's damping constant is negligible in determining the number of oscillations.
The subject of this question involves understanding the concept of a simple pendulum and how it relates to harmonic motion. It is widely known that the mass of the pendulum does not influence the oscillations but rather the length of the pendulum wire and acceleration due to gravity are paramount.
First, the necessary step toward calculating the number of swings would be to calculate the period of the pendulum's oscillation. This is given by the formula T=2*π*sqrt(L/g), where L is the length of the pendulum (14.4m) and g is the acceleration due to gravity (~9.81m/s²). Substituting these values will give us the period, T, in seconds.
The pendulum starts swinging at 8:00 am and at 12:00 noon, 4 hours or 14400 seconds will have passed. Therefore the number of oscillations will be calculated by dividing the total time by one period of oscillation.
It is crucial to note that the damping in this instance is quite small and would not significantly affect the number of oscillations.
#SPJ2
The displacement covered in a certain time will decrease.
The speed of the object will stay constant.
The velocity of the object will change.
Answer:
The change in momentum increases because the impact time increases.
Explanation:
The change in momentum of an object is also called impulse (J), and it is equal to
where
F is the force applied to the object
is the time taken for the change in momentum of the object to occur (the impact time)
From the formula above, we can notice that:
- the larger the force, the larger the change in momentum
- the larger the impact time, the larger the change in momentum
In the example of the baseball caught by the glove, when the glove moves backward, the time taken for the ball to stop increases (due to the movement of the gloves). Looking at the formula, we see that this means that the impulse (the change in momentum) increases.
Answer:
The change in momentum stays the same because the ball still comes to a stop.
Explanation:
here we know that momentum is defined as the product of mass and velocity
so here we know that
now we know that formula to find the change in momentum is given as
now when player moves his hand backwards then in this case final speed of the ball is zero and initial speed is same
So here we can say that there is no change in the equation but only the the to stop the ball is increased.
So here change in momentum will remain the same