Answer:
V₂ = 300 cm³
Explanation:
Given data:
Initial pressure = 302 KPa
Initial volume = 600 cm³
Final pressure = 604 KPa
Final volume = ?
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
302 KPa × 600 cm³ = 604 KPa× V₂
V₂ = 181200 KPa.cm³ / 604 KPa
V₂ = 300 cm³
B.) melting ice
C.) condensing steam
D.) dissolving ammonium nitrate in water
Answer:
C.) condensing steam
Explanation:
Exothermic reactions are chemical reaction which energy is released to the environment in the form of heat . The overall energy of the reactant is greater than the energy of the product. The higher in energy of the reactant causes a release of heat to the environment. In exothermic reactions, enthalpy change is usually negative and is accompanied by the loss of energy in the form of heat or light.
Condensation is the change of water vapor to liquid . The conversion is an exothermic reaction as energy is release to the environment in the form of heat. The water vapor molecules has higher energy than liquid. The changes of water vapor to liquid causes a loss in energy of the water vapor. As the water vapor loss more energy, heat is been release to the surrounding.
All other reaction are endothermic in which heat is absorb from the environment except for condensation of steam.
The event that is an example of an exothermic reaction is condensing steam. The answer is letter C. An exothermic reaction is one in which there is a release of heat during the reaction. Dissolving sugar in water, melting ice and dissolving ammonium nitrate in water are all examples of an endothermic reaction.
Answer:
i) Highest osmotic pressure: CaCl2
ii) lower vapor pressure : CaCl2
iii) highest boiling point : CaCl2
Explanation:
The colligative properties depend upon the number of solute particles in a solution.
The following four are the colligative properties:
a) osmotic pressure : more the concentration of the solute, more the osmotic pressure
b) vapor pressure: more the concentration of the solute, lesser the vapor pressure.
c) elevation in boiling point: more the concentration of the solute, more the boiling point.
d) depression in freezing point: more the concentration of the solute, lesser the freezing point.
the number of particle produced by urea = 1
the number of particle produced by AgNO3 = 2
the number of particle produced by CaCl2 = 3
As concentrations are same, CaCl2 will have more number of solute particles and urea will have least
i) Highest osmotic pressure: CaCl2
ii) lower vapor pressure : CaCl2
iii) highest boiling point : CaCl2
The solution with the highest number of particles in solution (CaCl2 in this case), experiences the highest osmotic pressure, lowest vapor pressure and highest boiling point due to the principles of colligative properties.
The question pertains to the colligative properties of solutions, which would be governed by the number of particles in the solution. The solutions are 0.04 m urea [(NH2)2C=O)], 0.04 m AgNO3, and 0.04 m CaCl2. For (i) Highest osmotic pressure, the solution with the highest ion count would yield the highest osmotic pressure. CaCl2 dissociates into three ions (Ca²+, and 2 Cl¯), therefore, it would exhibit the highest osmotic pressure. For (ii) Lowest vapor pressure, this would coincide with the solution with the highest osmotic pressure, again making it CaCl2, due to the greatest decrease in vapor pressure. For (iii) the highest boiling point, this too would be CaCl2 for the reasons stated above. The presence of more particles in a solution interferes more with the evaporation process, requiring more energy (higher temperature) to achieve boiling.
#SPJ3
(2) argon (4) sodium