Answer : The mass of silver chlorate will be 2.654 grams.
Explanation :
The balanced chemical reaction is,
First we have to calculate the moles of oxygen gas at STP.
As, 22.4 L volume of oxygen gas present in 1 mole of oxygen gas
So, 0.466 L volume of oxygen gas present in mole of oxygen gas
Now we have to calculate the moles of silver chlorate.
From the balanced chemical reaction, we conclude that
As, 3 moles of oxygen produced from 2 moles of silver chlorate
So, 0.0208 moles of oxygen produced from moles of silver chlorate
Now we have to calculate the mass of silver chlorate.
Molar mass of silver chlorate = 191.32 g/mole
Therefore, the mass of silver chlorate will be 2.654 grams.
Answer:
FALSE
Explanation:
Grunge refers to the genre of rock music and the fashion inspired by it. It originated in the mid-1980s in Seattle, Washington State.
Grunge was described as the fusion of punk rock and heavy metal.
This genre of music became popular in the early mid-1990s and included lyrics based on the theme of emotional and social alienation, betrayal, abuse, trauma etc.
Answer:
the new pressure is 2.09 atm
Explanation:
you have to use gay lussac's law so the formula is
p1/t1 = p2/t2
and convert C to Kelvin k=C+273.15
1.72atm/294.15 = p2/358.15
solve for p2 by multiplying 358.15 on both sides
p2=2.09 atm
i) Before adding NaOH
ii) After adding 24.00 mL NaOH
Answer:
i) pH = 0.6990
ii) pH = 2.389
Explanation:
i) Before adding aqueous NaOH, there are 25.00 mL of 0.2000 M HCl. HCl reacts with the water in the aqueous solution as follows:
HCl + H₂O ⇒ H₃O⁺ + Cl⁻
The HCl and H₃O⁺ are related to each other through a 1:1 molar ratio, so the concentration of H₃O⁺ is equal to the HCl concentration.
The pH is related to the hydronium ion concentration as follows:
pH = -log([H₃O⁺]) = -log(0.2000) = 0.699
ii) Addition of NaOH causes the following reaction:
H₃O⁺ + NaOH ⇒ 2H₂O + Na⁺
The H₃O⁺ and NaOH react in a 1:1 molar ratio. The amount of NaOH added is calculated:
n = CV = (0.2000 mol/L)(24.00 mL) = 4.800 mmol NaOH
Thus, 4.800 mmol of H₃O⁺ were neutralized.
The initial amount of H₃O⁺ present was:
n = CV = (0.2000 mol/L)(25.00 mL) = 5.000 mmol H₃O⁺
The amount of H₃O⁺ that remains after addition of NaOH is:
(5.000 mmol) - (4.800 mmol) = 0.2000 mmol
The concentration of H₃O⁺ is the amount of H₃O⁺ divided by the total volume. The total volume is (25.00 mL) + (24.00 mL ) = 49.00 mL
C = n/V = (0.2000 mmol) / (49.00 mL) = 0.004082 M
The pH is finally calculated:
pH = -log([H₃O⁺]) = -log(0.004082) = 2.389
a. increase
b. decrease
c. no change
d. cannot tell
Answer: Option (a) is the correct answer.
Explanation:
As the given situation shows that water is being added to water. This will liberate heat into the surround as the reaction will be exothermic in nature.
It is known that chemical reactions in which heat is released are known as exothermic reactions.
Hence, when more water is added to this tank the temperature of the system will increase due to release of heat.
Thus, we can conclude that if more water is added to this tank the temperature of the system will increase.
Answer:
1.133 kPa is the average pressure exerted by the molecules on the walls of the container.
Explanation:
Side of the cubic box = s = 20.0 cm
Volume of the box ,V=
Root mean square speed of the of helium molecule : 200m/s
The formula used for root mean square speed is:
where,
= root mean square speed
k = Boltzmann’s constant =
T = temperature = 370 K
M = mass helium =
= Avogadro’s number =
Moles of helium gas = n
Number of helium molecules = N =
N =
Ideal gas equation:
PV = nRT
Substitution of values of T and n from above :
(1 Pa = 0.001 kPa)
1.133 kPa is the average pressure exerted by the molecules on the walls of the container.
The question asks for the average pressure exerted by helium gas molecules on the walls of a cubic container. Using the equation PV = Nmv^2, we can calculate pressure by substituting the given values for volume, number of molecules, mass of one molecule, and root-mean-square speed.
The question is asking to calculate the average pressure exerted by helium gas molecules on the walls of a cubic container. The important formula relating pressure (P), volume (V), number of molecules (N), mass of a molecule (m), and the square of the rms speed (v2) of the molecules in a gas is:
PV = Nmv2,
First, we need to determine the volume of the container, which is the cube of one side, so V = (20 cm)3 = (0.2 m)3. Inserting the given values into the equation and solving for P gives us the desired answer. Recall that the rms speed is given, so no temperature calculations are needed.
Therefore, using all given data points:
Volume (V) = (0.2 m)3
Number of molecules (N) = 2.00 × 1023
Mass of one helium molecule (m) = 3.40 × 10-27 kg
Root-mean-square speed (vrms) = 200 m/s
By substituting these values, we can find the pressure exerted by the gas. This represents an application of kinetic theory of gases which assumes the behavior of an ideal gas.