Answer:
776
Explanation:
b. weapons
c. powering submarines
d. all of the above
Answer:
D. All of the above. you're welcome
To make this problem solvable and you can get the help you need, I'll complete and arrange some data.
Answer:
Acceleration: , Distance=7,500 m
Explanation:
Uniform Acceleration Motion
It's a type of motion in which the velocity of an object changes uniformly over time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:
The distance traveled by the object is given by:
Using the equation [1] we can solve for a:
The problem will be rewritten as follows:
A train starting from rest reaches a velocity of 90 km/h in 10 minutes. Assuming that the acceleration is uniform, find the acceleration and the distance traveled by the train for attending the velocity.
Let's take the relevant data:
vo=0
vf=90 Km/h*1000/3600 = 25 m/s
t = 10 minutes = 10*60 = 600 seconds
Now compute the acceleration by using [3]:
Finally, compute the distance:
Note: We used the value of the acceleration with more precision than shown.
Acceleration:, Distance=7,500 m
Answer:
To calculate the net electric flux through a cube placed in a uniform electric field, you can use Gauss's Law, which states that the electric flux (Φ) through a closed surface is equal to the electric field (E) times the surface area (A) and is also equal to the enclosed charge (Q) divided by the permittivity of free space (ε₀):
Φ = E * A = Q / ε₀
In this case, the cube has a side length of 1 meter, so its surface area (A) is 6 square meters (since there are 6 faces of a cube). The electric field (E) is given as 10⁴ N/C î, and there is no mention of any enclosed charge (Q) within the cube.
Now, calculate the electric flux:
Φ = E * A = (10⁴ N/C) * (6 m²) = 60,000 N m²/C
The unit of electric flux is N m²/C.
So, the net electric flux through the cube is 60,000 N m²/C, which is not one of the provided answer choices. However, if you convert this to the preferred unit of electric flux, which is N m² c⁻¹, you get:
60,000 N m²/C = 60,000 N m² c⁻¹
So, the answer closest to this value is (c) 5 x 10⁴ N m² c⁻¹.
Explanation:
Have great day!
Answer: Elastic energy is the energy store in a.. compacted spring; an extended elastic band; and a drawn bow.
Chemical potential energy is position of electrons in specific substance bonds that can be broken (energizes).
:
This stored energy is released and performs work when the elastic material reverts back to its original position. ... In comparison, chemical potential energy, is the energy released during the formation of chemical compounds.