If you are facing the opposite direction of the way the wave is moving, then it will be higher. But, if you are moving the same direction as the wave, it will be lower, because the frequency should go down. Hope this helps! :)
Answer:
it's a river flowing into the sea
Explanation:
i had it on a quiz for k12 on god it's the good one have a good day
We have that When a carbon atom losses a proton Boron element would be formed.
Boron element
From the question we are told
Is a carbon atom spontaneously lost a proton what element would be formed
Generally
Carbon as an element has an atomic number of 6
Therefore
When a carbon atom losses a proton Boron element would be formed.
For more information on this visit
Answer: Protons carry a positive electrical charge and they alone determine the charge of the nucleus. Adding or removing protons from the nucleus changes the charge of the nucleus and changes that atom's atomic number. So, adding or removing protons from the nucleus changes what element that atom is!
Explanation: For example, adding a proton to the nucleus of an atom of hydrogen creates an atom of helium. (Actually, a few neutrons have to be added as well to make the new nucleus stable, but the end result is still helium.) Keep in mind that atoms, by definition, are electrically neutral and always contain the same number of protons and electrons.
Answer:
Two Covalent Bonds
Chemistry Concepts:
Oxygen, which is in group 6 or 16 of the periodic table, has 6 valence electrons. To achieve a full outer shell of 8 electrons, oxygen needs to gain 2 electrons or share two electrons by forming covalent bonds. Therefore, oxygen typically forms two covalent bonds with other atoms to complete its outer shell and achieve a stable electron configuration.
When oxygen forms a covalent bond with another atom, it shares one or more pairs of electrons with that atom. The shared electrons are called bonding electrons, and they are shared between the oxygen atom and the other atom. The valence electrons of the other atom also participate in the covalent bond and are shared between the two atoms.
The electrons that are not involved in bonding, known as non-bonding or lone pair electrons, remain on the oxygen atom. These electrons are still part of the valence shell of the oxygen atom and are involved in its chemical properties, but they do not participate in the covalent bond with the other atom.
Furthermore, when oxygen forms a covalent bond with another atom, both atoms share electrons, including valence electrons, to achieve a more stable electron configuration.
Learn more about Covalent Bonds:
Oxygen is in group 6 of the periodic table. In general, oxygen tends to form two covalent bonds with other atoms.
To understand why oxygen forms two covalent bonds, let's look at its electron configuration. Oxygen has 8 electrons, with 2 in its innermost shell and 6 in its outermost shell. The outermost shell can hold a maximum of 8 electrons, so oxygen needs to gain 2 more electrons to have a full outer shell.
In a covalent bond, atoms share electrons to achieve a stable electron configuration. Oxygen can share two electrons with other atoms to complete its outer shell. This means that oxygen typically forms two covalent bonds, with each bond involving the sharing of two electrons.
For example, in a molecule of water (H2O), oxygen forms two covalent bonds with two hydrogen atoms. Each bond involves the sharing of one electron from each hydrogen atom and one electron from oxygen. This sharing of electrons allows all atoms involved to have a full outer shell, making the molecule stable.
It's important to note that there can be exceptions to this general rule. In some cases, oxygen can form more than two covalent bonds, such as in molecules like ozone (O3) or sulfur dioxide (SO2). However, these cases involve different bonding arrangements and are not as common as the formation of two covalent bonds.