Answer:
The correct answer is option B)
Explanation:
Considering the given question as -
The space shuttle is located exactly half way between the earth and the moon. Which statement is true regarding the gravitational pull on the shuttle? A) The moon pulls more on the shuttle. B) The earth pulls more on the shuttle. C) Both are equal due to equal distances. D) Both are equal due to the mass of the shuttle.
We know that gravitational pull (F) between any two bodies of mass and is given by -
F = where 'r' is the distance between the two bodies.
Let ,
: Mass of the earth
: Mass of the moon
m : Mass of the satellite
: Distance of satellite from earth
: Distance of satellite from moon
Given that =
Let ==r
Force on satellite by the earth is -
=
Force on satellite by the moon is -
=
∵ Mass of earth () > Mass of moon ()
∴ >
∴ The gravitational pull of earth on satellite is more than that of the moon.
(b) What is the value of g at the location of this satellite?
(a) above Earth's surface
The orbital speed of a satellite orbiting the Earth can be found using the equation
where
G is the gravitational constant
is the Earth's mass
r is the radius of the satellite's orbit
The orbital speed can also be rewritten as the ratio between the circumference of the orbit and the orbital period, T:
where
T = 129 min = 7740 s is the period
Combining the two equations,
And solving for r,
This is, however, the orbital radius: this means we have to subtract the Earth's radius to find the altitude of the satellite, which is
therefore, the altitude of the satellite is
b)
The value of g at the location of the satellite is given by
where:
G is the gravitational constant
is the Earth's mass
is the radius of the satellite's orbit
Substituting into the equation, we find
The satellite orbits at an altitude of approximately 800 km. The gravitational constant, 'g', at this location is approximately 8.66 m/s^2.
The orbital period of an artificial satellite can be used to calculate the altitude at which it orbits. For a satellite that completes each orbit in 129 min (or approximately 2.15 hr), we can apply Kepler's third law which states that the square of the period of a satellite is proportional to the cube of its semi-major axis (distance from the center of the Earth to the satellite).
The formula for the altitude is given by: h = [(GMT^2)/(4π^2)]^(1/3) - R, where G is the gravitational constant, M the mass of Earth, T the orbital period, and R the Earth's radius. With the values G=6.67 x 10^-11 N(m/kg)^2, M=5.98 x 10^24 kg, T=2.15 hr = 7740s, and R=6.371 x 10^6 m, we get h approximately equals 800 km.
The value of 'g' at the satellite's location is given by g = GM/(R+h)^2. Substituting the aforementioned values, we get g to be approximately 8.66 m/s^2. This is less than the 9.81 m/s^2 at Earth's surface due to the increased distance from the Earth's center.
#SPJ11
current in the flashlight?
Answer:
3 A
Explanation:
The relationship between voltage, current and resistance in a conductor is expressed by Ohm's law, which states that:
where:
V is the potential difference across the conductor
R is the resistance of the conductor
I is the current flowing through it
In this problem, for this flashlight we have:
V = 90 V is the potential difference
is the resistance of the flashlight
Solving for I, we find the current:
despite experiencing a 60N drag. Neglect any friction
impeding her motion.
How many forces are acting on the bicyclist?
What is the magnitude of the net force on the bicyclist?
How much force is the bicyclist generating through her
pedaling?
a) 4 forces
b) 186 N
c) 246 N
Explanation:
a)
Let's count the forces acting on the bicylist:
1) Weight (): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)
2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite
3) Applied force (): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward
4) Air drag (): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction
So, we have 4 forces in total.
b)
Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:
where
is the net force
m is the mass of the body
a is its acceleration
In this problem we have:
m = 60 kg is the mass of the bicyclist
is its acceleration
Substituting, we find the net force on the bicyclist:
c)
We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:
where:
is the net force
is the applied force (forward)
is the air drag (backward)
In this problem we have:
is the net force (found in part b)
is the magnitude of the air drag
Solving for , we find the force produced by the bicyclist while pedaling: