a compass works with magnetic field the answer is d
The formula to determine the wavelength is, De-Broglie wavelength formula:
-(1)
where, is wavelength, m is mass, v is velocity and h is Planck's constant = =
mass, m = 147 g (given)
Since, 1 g = 0.001 kg
So, 147 g = 0.147 kg
v = 91.0 mph (given)
Converting mph to mps:
Since,
So, =
Substituting the values in formula 1:
Hence, the wavelength wavelength of a 147-g baseball traveling at 91.0 mph is
.
Answer: its D
Explanation:
Explanation:
Reduction is a chemical reaction in which electrons are gained by one of the atoms taking part in the reaction and lowering of an oxidation state of that atom.
Reduction takes place at the cathode.
In aqueous, vanadium(V) is present in +5 oxidation state which on reduction changes to vanadium(I) with +1 oxidation state.
The half reaction is :
The balanced half-cell reaction for the reduction of aqueous vanadium (V) cations to aqueous vanadium (I) cations is .
Further Explanation:
Redox reaction:
It is a type of chemical reaction in which the oxidation states of atoms are changed. In this reaction, both reduction and oxidation are carried out at the same time. Such reactions are characterized by the transfer of electrons between the species involved in the reaction.
The process of gain of electrons or the decrease in the oxidation state of the atom is called reduction while that of loss of electrons or the increase in the oxidation number is known as oxidation. In redox reactions, one species lose electrons and the other species gain electrons. The species that lose electrons and itself gets oxidized is called as a reductant or reducing agent. The species that gains electrons and gets reduced is known as an oxidant or oxidizing agent. The presence of a redox pair or redox couple is a must for the redox reaction.
The general representation of a redox reaction is,
The oxidation half-reaction can be written as:
The reduction half-reaction can be written as:
Here, X is getting oxidized and its oxidation state changes from to +1 whereas B is getting reduced and its oxidation state changes from 0 to -1. Hence, X acts as the reducing agent whereas Y is an oxidizing agent.
Initially, vanadium is present in +5 oxidation state. Its oxidation state changes from +5 to +1 oxidation state. The oxidation state of V is decreased during the reaction so reduction is taking place. The balanced reduction half-cell reaction is as follows
Learn more:
1. Which occurs during redox reaction? brainly.com/question/1616320
2. Oxidation and reduction reaction: brainly.com/question/2973661
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Redox reactions
Keywords: V5+, V1+, 4e-, oxidation state, reduction, oxidation, redox reaction, transfer of electrons, reducing agents, oxidizing agents.
3. Determine the average percent yield of MgO for the two trials.
Answer:
Part 1
Theoretical yield of MgO for trial 1 = 0.84 g
Theoretical yield of MgO for trial 2 = 1.01 g
Part 2
Percent yield trial 1 = 28.6 %
Percent yield trial 2 = 49.9 %
Part 3
Average percent yield of MgO for two trial = 39.25 %
Explanation:
Part 1.
Data Given
Trial 1 Trial 2
mass of empty crucible and lid: 26.679 g 26.685 g
mass of Mg metal, crucible and lid: 26.931 g 26.988 g
mass of MgO, crucible and lid: 27.090 g 27.179 g
Theoretical yield of MgO for trial 1 and 2 = ?
Solution:
As Mg is limiting reagent so amount of MgO depends on the amount of Mg.
So, now we will look for the reaction to calculate theoretical yield
MgO form by the following reaction:
Mg + O₂ ---------> 2 MgO
1 mol 2 mol
Convert moles to mass
Molar mass of Mg = 24 g/mol
Molar mass of MgO = 24 + 16 = 40 g/mol
So,
Mg + O₂ ---------> 2 MgO
1 mol (24 g/mol) 2 mol(40 g/mol)
24 g 80 g
So,
24 g of Mg gives 80 g of MgO
To Calculate theoretical yield of MgO for Trial 1
First we look for the mass of Mg in the Crucible
Mass of Mg = mass of Mg metal, crucible and lid - mass of empty crucible and lid
Mass of Mg = 26.931 g - 26.679 g
Mass of Mg = 0.252 g
As we come to know that 24 g of Mg gives 80 g of MgO, then amount of Mg from trial 1 that is 0.252 g will produce how many grams of MgO
Apply unity formula
24 g of Mg ≅ 80 g of MgO
0.252 g of Mg ≅ X g of MgO
Do cross multiplication
X g of MgO = 0.252 g x 80 g / 24 g
X g of MgO = 0.84 g
So the theoretical yield of MgO is 0.84 g
--------------
To Calculate theoretical yield of MgO for Trial 2
First we look for the mass of Mg in the Crucible
Mass of Mg = mass of Mg metal, crucible and lid - mass of empty crucible and lid
Mass of Mg = 26.988 g - 26.685 g
Mass of Mg = 0.303 g
As we come to know that 24 g of Mg gives 80 g of MgO, then amount of Mg from trial 2 that is 0.303 g will produce how many grams of MgO
Apply unity formula
24 g of Mg ≅ 80 g of MgO
0.303 g of Mg ≅ X g of MgO
Do cross multiplication
X g of MgO = 0.303 g x 80 g / 24 g
X g of MgO = 1.01 g
So the theoretical yield of MgO is 1.01 g
__________________________
Part 2
percent yield of MgO for trial 1 and 2 = ?
Solution:
For trial 1
To calculate percent yield we have to know about actual yield of MgO
Mass of MgO = mass of MgO, crucible and lid - mass of empty crucible and lid
Mass of MgO = 27.090 g - 26.685 g
Mass of MgO = 0.24 g
And we also know that
Theoretical yield of MgO for trial 1 = 0.84 g
Formula used
Percent yield = actual yield / theoretical yield x 100
put values in above formula
Percent yield = 0.24 g / 0.84 g x 100
Percent yield = 28.6 %
--------------
For trial 2
To calculate percent yield we have to know about actual yield of MgO
Mass of MgO = mass of MgO, crucible and lid - mass of empty crucible and lid
Mass of MgO = 27.179 g - 26.685 g
Mass of MgO = 0.494 g
And we also know that
Theoretical yield of MgO for trial 2 = 1.01 g
Formula used
Percent yield = actual yield / theoretical yield x 100
put values in above formula
Percent yield = 0.494 g/ 1.01 g x 100
Percent yield = 49.9 %
--------------
Part 3
average percent yield of MgO for the two trials =?
Solution:
As we know
Percent yield trial 2 = 28.6 %
Percent yield trial 2 = 49.9 %
Formula used
Average percent yield = percent yield trial 1 + percent yield trial 2 / 2
Put values in above formula
Average percent yield = 28.6 + 49.9 / 2
Average percent yield = 78.5 / 2
Average percent yield = 39.25 %
Average percent yield of MgO for two trial = 39.25 %
Answer:
Antigens are molecules capable of stimulating an immune response. Each antigen has distinct surface features, or epitopes, resulting in specific responses. Antibodies (immunoglobins) are Y-shaped proteins produced by B cells of the immune system in response to exposure to antigens.
Answer:
85
Explanation: