Answer:
You remove waste as a gas (carbon dioxide), as a liquid (urine and sweat), and as a solid. Excretion is the process of removing wastes and excess water from the body. Recall that carbon dioxide travels through the blood and is transferred to the lungs where it is exhaled
Moving Materials include aluminum foil tape, shipping tape, box tape and duct tape. Moving labels take the guesswork out of the moving process.
B. Atoms of every element except hydrogen
C. Atoms of every element
D. Atoms of every element except carbon and hydrogen
Answer:
Atoms of every element are shown in a skeletal model of an organic molecule.
Explanation:
Skeletal model of an organic molecule consists of various skeletal atoms that are used in making up of the molecule. Various conventions of hydrogen and carbon atoms are employed in it. The molecules bonding and certain representation of molecular geometry are shown in the structural formula.
Use of skeletal formula is ubiquitous in organic chemistry. Thus, in organic chemistry atoms of every element are shown in the skeletal model of an organic molecule
Answer:
Metalloids are called the border of metals and non metals.
Explanation:
They show some properties of metals and some properties of non metals.
Answer:
Metalloids exhibit metal and non-metal properties.
Explanation:
Some metals such as Boron and silicons and not necessarily a metal, nor are they a gas.
The element found in the liver that helps prevent anemia is iron.
Iron is an essential element for blood production. Close to 70% of the body's iron is found in the red blood cells. In the red blood cells it is a vital ingredient of hemoglobin, the red pigment that gives blood its red color. In the muscle cells, iron is found as myoglobin.
Iron is stored mostly in the liver as ferritin or hemosiderin.
When iron stores are finished or exhausted, the condition is called iron depletion. When the shortage of iron is severe, it results in a condition known as iron deficiency anemia whereby the red blood cells do not have enough hemoglobin.
Answer:
Mass = 76.176 g
Explanation:
Given data:
Mass of lead(II) chloride produced = 62.9 g
Mass of lead(II) nitrate used = ?
Solution:
Chemical equation:
Pb(NO₃)₂ + 2HCl → PbCl₂ + 2HNO₃
Number of moles of lead(II) chloride:
Number of moles = mass/molar mass
Number of moles = 62.9 g/ 278.1 g/mol
Number of moles = 0.23 mol
Now we will compare the moles of lead(II) chloride with Pb(NO₃)₂ from balance chemical equation:
PbCl₂ : Pb(NO₃)₂
1 : 1
0.23 : 0.23
Mass of Pb(NO₃)₂:
Mass = number of moles × molar mass
Mass = 0.23 mol × 331.2 g/mol
Mass = 76.176 g