(2) ice, liquid water, and steam
(3) steam, liquid water, and ice
(4) steam, ice, and liquid water
Answer:
0.87
Explanation:
B) it is a product in one intermediate reaction and a catalyst in the other reaction.
C) it is a reactant in one intermediate reaction and a product in the other reaction.
D) it is a reactant in both of the intermediate reactions.
Answer: Option (C) is the correct option.
Explanation:
When two intermediate chemical equations are combined, the same substance that appears in the same phase can be canceled out, provided that it is a reactant in one intermediate reaction and a product in the other reaction.
For example,
....(1)
.........(2)
Cancelling the common species in both the equations as follows.
Therefore, on addition we get the equation as follows.
B. the change in temperature the object undergoes.
C. the initial amount of Calories in the object.
D. the mass of the object.
The amount of heat transferred from an object depends on all of the following except the initial amount of Calories in the object. The answer is letter C. The equation to be used to calculate the heat release when solid melts is the enthalpy of melting. It is represented as H = mCpT where H is the heat released after phase change, m is the mass of the substance, Cp is the specific heat capacity of the substance and T is the change in temperature.