What type of hybridization is needed to explain why ethyne, C2H2, is linear?

Answers

Answer 1
Answer:

When C-C is having a triple bond the hybridization is sp. But I am not sure how to relate that to the linear shape.


Related Questions

Assume a gasoline is isooctane, which has a density of 0.692 g/ml. What is the mass of 3.8 gal of the gasoline (1 gal = 3.78 l)?
How many liters of the antifreeze ethylene glycol [CH2(OH)CH2(OH)] would you add to a car radiator containing 6.50 L of water if the coldest winter temperature in your area is -10.°C? (The density of ethylene glycol is 1.11 g/mL. Assume the density of water at -10.°C is 1.00 g/mL.)
Consider the dissolution of AB(s):AB(s)⇌A+(aq)+B−(aq)Le Châtelier's principle tells us that an increase in either [A+] or [B−] will shift this equilibrium to the left, reducing the solubility of AB. In other words, AB is more soluble in pure water than in a solution that already contains A+ or B− ions. This is an example of the common-ion effect.The generic metal hydroxide M(OH)2 has Ksp = 1.05×10−18. (NOTE: In this particular problem, because of the magnitude of the Ksp and the stoichiometry of the compound, the contribution of OH− from water can be ignored. However, this may not always be the case.)What is the solubility of M(OH)2 in pure water?
g n the following three compounds(1,2,3) arrange their relative reactivity towards the reagent CH3Cl / AlCl3. Justify your order
You have been injured in the laboratory (cut,burn,etc) first you should

The combustion of 0.295 kg of propane produces 712 g of carbon dioxide. What is the percent yield of carbon dioxide? ( Make sure to balance equation) C3H8 (g)+ 029) à co2 g H200 0a. 124%
b. 41 .4%
c. 80.5%
d. 0.805 %

Answers

Answer:

Option C. 80.5%

Explanation:

We'll begin by writing the balanced equation for the reaction. This is illustrated below:

C3H8 + 5O2 —> 3CO2 + 4H2O

Next, we shall determine the mass of C3H8 that reacted and the mass of CO2 produced from the balanced equation.

This is illustrated below:

Molar mass of C3H8 = (3x12) + (8x1) = 36 + 8 = 44 g/mol

Mass of C3H8 from the balanced equation = 1 x 44 = 44 g

Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol

Mass of CO2 from the balanced equation = 3 x 44 = 132 g

From the balanced equation above,

44 g of C3H8 reacted to produce 132 g of CO2.

Next, we shall determine the theoretical yield of CO2.

This can be obtained as shown below:

From the balanced equation above,

44 g of C3H8 reacted to produce 132 g of CO2.

Therefore, 0.295 kg (i.e 295 g) will react to produce = (295 x 132)/44 = 885 g of CO2.

Therefore, the theoretical yield of CO2 is 885 g.

Finally, we shall determine the percentage yield of CO2 as follow:

Actual yield of CO2 = 712 g

Theoretical yield of CO2 = 885 g

Percentage yield of CO2 =..?

Percentage yield = Actual yield /Theoretical yield x 100

Percentage yield of CO2 = 712/885 x 100

Percentage yield = 80.5%

Therefore, the percentage yield of CO2 is 80.5%.

Classify these bonds as ionic, polar covalent, or nonpolar covalent p cl k br c c

Answers

Types of Bonds can be predicted by calculating the difference in electronegativity.
If, Electronegativity difference is,
 
                Less than 0.4 then it is Non Polar Covalent
                
                Between 0.4 and 1.7 then it is Polar Covalent 
            
                Greater than 1.7 then it is Ionic
 
For P and Cl,
                    E.N of Chlorine                =   3.16
                    E.N of Phosphorous        =   2.19
                                                             ________

                      E.N Difference                     0.97          (Polar Covalent)

For K and Br,
                    E.N of Bromine                =   2.96
                    E.N of Potassium             =   0.82
                                                             ________

                      E.N Difference                     2.14          (Ionic)

For C and C,
                    E.N of Carbon                =   2.55
                    E.N of Carbon                =   2.55
                                                             ________

                      E.N Difference                   0.00          (Non-Polar Covalent)

Why does ammonium nitrate (NH4NO3) dissolve readily in water even though the dissolution process is endothermic by 26.4 kJ/mol? Why does ammonium nitrate (NH4NO3) dissolve readily in water even though the dissolution process is endothermic by 26.4 kJ/mol? The vapor pressure of the water decreases upon addition of the solute. The osmotic properties of the system lead to this behavior. The overall enthalpy of the system decreases upon addition of the solute. The overall entropy of the system increases upon dissolution of this strong electrolyte. The overall enthalpy of the system increases upon dissolution of this strong electrolyte.

Answers

Answer: Option (c) is the correct answer.

Explanation:

Entropy is defined as the degree of randomness that is present within the particles of a substance.

As NH_(4)NO_(3) is ionic in nature. Hence, when it is added to water then it will readily dissociate into ammonium ions (NH^}{+}_(4)) and nitrate ions (NO^(-)_(3)).

Therefore, it means that ions of ammonium nitrate will be free to move from one place to another. Hence, there will occur an increase in entropy.

Thus, we can conclude that ammonium nitrate (NH_(4)NO_(3)) dissolve readily in water even though the dissolution process is endothermic by 26.4 kJ/mol because the overall entropy of the system increases upon dissolution of this strong electrolyte.

A piston confines 0.200 mol Ne(g) in 1.20 at 25 degree C. Two experiments are performed. (a) The gas is allowed to expand through an additional 1.20 L against a constant of 1.00atm. (b) The gas is allowed to expand reversibly and isothermally to the same final volume. Please calculate the work done by the gas system in these two processes, respectively. Which process does more work? (revised from 6/e exercise 8.11) Please show calculation details.

Answers

Answer:

The second experiment (reversible path) does more work

Explanation:

Step 1:

A piston confines 0.200 mol Ne(g) in 1.20L at 25 degree °C

(a) The gas is allowed to expand through an additional 1.20 L against a constant of 1.00atm

Irreversible path: w =-Pex*ΔV

⇒ with Pex = 1.00 atm

⇒ with ΔV = 1.20 L

W = -(1.00 atm) * 1.20 L

W = -1.20L*atm *101.325 J /1 L*atm = -121.59 J

(b) The gas is allowed to expand reversibly and isothermally to the same final volume.

W = -nRTln(Vfinal/Vinitial)

⇒ with n = the number of moles = 0.200

⇒ with R = gas constant = 8.3145 J/K*mol

⇒ with T = 298 Kelvin

⇒ with Vfinal/Vinitial  = 2.40/1.20 = 2

W = -(0.200mol) * 8.3145 J/K*mol *298K *ln(2.4/1.2)

W = -343.5 J

The second experiment (reversible path) does more work

4. define a tsunami

Answers

Answer:

A high wave caused by either an earthquake, submarine landslide, or other disturbance that occurs.

Explanation:

Answer:

a Big Big wave

Explanation:

A tsunami is a Big Big wave

How to atoms share more than one pair of electrons?

Answers

Answer:

A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.

Explanation:

More than one pair of electrons can be shared between atoms to form double or triple covalent bonds. Unlike ionic bonds, covalent bonds are often formed between atoms where one of the atoms cannot easily attain a noble gas electron shell configuration through the loss or gain of one or two electrons.