For this case, the first thing we must do is define the scientific notation.
We have then:
Scientific notation is a way of writing numbers too big or small in a conventional way.
A number written in scientific notation has the following form:
Where,
m: it is called matinsa
e: it is the order of magnitude
Therefore, for the given number we have that the scientific notation is:
Answer:
the power of 10 when 0.000028 is written in scientific notation is:
-5
b. The dark lines are at higher energies than the bright lines.
c. The bright lines are at higher energies than the dark lines.
d. You cannot relate the two types of spectra.
The dark absorption lines of an atom's spectrum correspond to the same energies as the bright emission lines. They both reflect energy changes in electron states.
The dark lines of an atom's absorption spectrum are at the same energies as the bright lines of its emission spectrum, therefore the correct answer is a. The bright lines are at the same energies as the dark lines. Absorption spectra are produced when electrons absorb energy and move to a higher energy level, while emission spectra are observed when electrons lose energy and return to a lower energy level.
The dark lines (absorption) and bright lines (emission) coincide because the energy required to move an electron from a lower to higher energy level matches the energy released when an electron drops from a higher to lower state.
#SPJ12
In this question we have given
velocity of missile=1350m/s
angle at which missile is moving=25degree
distance between missile and targets=23500m
angle between target and missile=55degree
time=10.2s
To find the final velocity of missile we will first find the acceleration required
Let x be the horizontal component of distance
x - vertical component of distance
t-time
ax- horizontal component of acceleration
ay-Vertical component of acceleration
Vx-horizontal component of velocity
Vy-Vertical component of velocity
horizontally: x = Vx*t + ½*ax*t²
23500m * cos55.0º = 1350m/s * cos25.0º * 10.20s + ½ * ax * (10.20s)²
ax = 19.2 m/s²
V'x = Vx + ax*t = 1350m/s * cos25.0º + 19.2m/s² * 10.20s = 1419 m/s
similarly vertically:
y = Vy*t + ½*ay*t²
23500m * sin55.0º = 1350m/s * sin25.0º * 10.20s + ½ * ay * (10.20s)²
ay = 258 m/s²
V'y = Vy + ay*t = 1350m/s * sin25.0º + 258m/s² * 10.20s = 3204 m/s
Therefore
V = √(V'x² + V'y²) = 3504 m/s
therefore magnitude of final velocity of missile=3504m/s
At the peak of its trajectory, the ball's vertical velocity (v1,y) is zero, whereas its horizontal velocity (v1,x) maintains its consistency. The accelerations a1,x and a1,y are 0 and -9.8 m/s² respectively.
The physical concept analyzed here is projectile motion. Considering the trajectory of a ball, we can separate its motion into horizontal and vertical components. At the peak of its trajectory (time t1), the ball's vertical velocity (v1,y) is zero, because it temporarily stops moving upwards before it begins to fall again. However, since there is no acceleration in the horizontal direction (a1,x), the ball keeps moving horizontally with constant velocity (v1,x).
The acceleration in the vertical direction (a1,y) is still the acceleration due to gravity (-9.8 m/s²). This is because even at the peak of the trajectory, the ball is still accelerating downwards. Therefore, the correct answer should include v1,y = 0 m/s, v1,x = consistent value, a1,x = 0 m/s², and a1,y = -9.8 m/s². So the most probable answer is D) 15.0, 0, 0, -9.80, assuming the ball's horizontal velocity is 15 m/s. Please check the exact value of horizontal velocity (v1,x) in the settings of your problem.
#SPJ12
b. upright and larger than the object.
c. inverted and smaller than the object.
d. upright and smaller than the object.
Penn Foster STudents: d. upright and smaller than the object.