Answer:
1,803,036.67 W
Explanation:
Data provided in the question:
People per hour that can be moved by lift = 49800
Height of movement, h = 190 m
Average mass per person = 70 kg
Now,
Power = Rate of doing work
Thus,
Power = ΔU
= mgh
here,
m = total mass
g = acceleration due to gravity
or
Power = (70kg × 49800)(9.8)(190)
or
Power = 6,490,932,000 J per hour
also,
Watt = Joule/second
Therefore,
Power = 6,490,932,000 ÷ 3600
= 1803036.67 W
To estimate the maximum total power needed for Squaw Valley ski area to move 49800 people per hour on their lifts, we calculate the work done per person per hour and then divide it by the time taken to travel vertically by 190 m. The estimated maximum total power needed is 3.31 x 10^8 W.
To estimate the maximum total power needed to move 49800 people per hour on a skilift at Squaw Valley, we can calculate the work done per person per hour and then divide it by the time taken to travel vertically by 190m. The work done is equal to the potential energy gained, which is given by the formula mgh, where m is the average mass per person (70 kg), g is the acceleration due to gravity (9.8 m/s^2), and h is the vertical height gained (190 m). Multiplying this by the number of people per hour gives us the total work done per hour. Dividing this by the time taken to travel the vertical height gives us the maximum power needed. The power is given by the formula P = W/t, where W is the work done and t is the time taken.
Using the given values, we have:
Work done per person per hour: (70 kg) x (9.8 m/s^2) x (190 m) = 128660 J
Total work done per hour: 128660 J x 49800 = 6.40 x 10^9 J
Time taken to travel vertically by 190m: 190 m / (9.8 m/s^2) = 19.39 s
Maximum power needed: (6.40 x 10^9 J) / (19.39 s) = 3.31 x 10^8 W
#SPJ3
Answer:
a = 2 m/s²
Explanation:
Given: 20 g, 40N
To find: Acceleration (a)
Solution: To find the acceleration (A), divide the force by the weight
A = F ÷ m
= 40 ÷ 20
= 2 m/s²
Newtons are derived units, equal to 1 kg-m/s². In other words, a single Newton is equal to the force needed to accelerate one kilogram one meter per second squared.
The velocity of the stone when it is 5.25 m above the ground is determined as 6.93 m/s.
The velocity of the stone at the given displacement is calculated as follows;
K.E = ΔP.E
¹/₂mv² = mgh
v = √2gΔh
v = √[2(9.8)(7.7 - 5.25)]
v = 6.93 m/s
Thus, the velocity of the stone when it is 5.25 m above the ground is determined as 6.93 m/s.
Learn more about velocity here: brainly.com/question/4931057
#SPJ1