a. True
b. False
Answer:True
Explanation:In an ideal situation, equilibrium constants cannot be altered if you change the pressure of a system. However, only change in temperature can result to change in equilibrium constants. If there are the same value of molecules on either side of the equation, then a change of pressure is insignificant to the position of equilibrium.
The greatest acceleration that the truck can have before the toolbox slides out can be calculated by understanding the balance between the inertia force experienced by the toolbox due to acceleration (F = ma) and the maximum static friction force (fs(max) = μsN) opposing this motion. The truck can accelerate up to the point at which these two forces are equal.
The question relates to a concept in Physics known as Friction. In this scenario, the toolbox on the truck experiences static friction which keeps it from sliding. The maximum force of static friction can be calculated using the equation fs(max) = μsN, where μs is the coefficient of static friction and N is the normal force. In this case, μs is given as 0.300 and the normal force N equals the weight of the toolbox. The truck can accelerate up to the point where the frictional force equals the force caused by acceleration, which is calculated using the equation F = ma, where m is mass and a is acceleration.
When the truck accelerates, an inertia force acts on the toolbox in the opposite direction. This inertia force, F = ma, should not exceed the maximum static friction force, fs(max), otherwise, the toolbox will slide. Hence, with given values of static friction coefficient and mass of the toolbox, the greatest acceleration of the truck to prevent slipping can be calculated by equating the frictional force and inertia force.
#SPJ12
The greatest acceleration that the truck can have before the toolbox slides out is 5.00 m/s².
The greatest acceleration that the truck can have before the toolbox slides out can be found by comparing the force of static friction to the force pushing the toolbox forward. In this case, the force of static friction must be equal to or greater than the force pushing the toolbox, which is the product of the mass of the toolbox and its acceleration. Given the coefficient of static friction of 0.300, the maximum force of static friction can be calculated. Using the equation fs <= μsN, where fs is the force of static friction, μs is the coefficient of static friction, and N is the normal force, we can substitute the values and solve for the maximum force of static friction which is 196 N. The maximum force of static friction is equal to the product of the mass of the toolbox and its acceleration, which gives us the equation fs = max = (50.0 kg)(5.00 m/s²) = 250 N. Therefore, the greatest acceleration that the truck can have before the toolbox slides out is 5.00 m/s².
#SPJ11
C. It will move along the normal. D. It will move perpendicular to the normal.
E. It stops traveling.
Answer:
Explanation:
Answer:
A. the number of protons in an atom
Explanation:
The atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom.
Answer:
A. the number of protons in an atom
Explanation: