Answer: a digital signal
Explanation:
Answer:
Power
Explanation:
I just took the quiz
From the information given, cannon ball weighs 40 kg and has a potential energy of 14000 J.
We need to find its height.
We will use the formula P.E = mgh
Therefore h = P.E / mg
where P.E is the potential energy,
m is mass in kg,
g is acceleration due to gravity (9.8 m/s²)
h is the height of the object's displacement in meters.
h = P.E. / mg
h = 14000 / 40 × 9.8
h = 14000 / 392
h = 35.7
Therefore the canon ball was 35.7 meters high.
The height of the cannon ball to have 14000 J of potential energy is approximately 357.14 meters. This is calculated using the formula for potential energy: PE = mgh, and solving for 'h'.
The potential energy (PE) of an object is given by the formula PE = mgh, where 'm' is the mass of the object, 'g' is the acceleration due to gravity (standard approximate value is 9.8 m/s² on Earth), and 'h' is the height. In your question, we want to find the height 'h'. Given that the potential energy is 14000 J and the mass of the cannon ball is 40 kg, we can rearrange the formula to solve for 'h': h = PE / (m*g).
So, inputting the given values, h = 14000 J / (40 kg * 9.8 m/s²). Solving this, we find that the height is approximately 357.14 meters. This means the cannon ball was at around this height to have 14000 J of potential energy.
#SPJ11
Answer:
The solar radiation is one of the main factors that shapes the climate all over the globe, so the climate differs with the less or more solar radiation it gets. The polar regions are cold, this is due to the fact that the solar radiation in here is very obscure, because the solar radiation falls at a very wide angle the heat is dispersed over larger area, thus the land gets very little warmth. The Equator, on the other hand, gets direct solar radiation, the sun light falls at a 90 degrees angle or close to it, so the radiation is more concentrated on a smaller area, thus the warming is bigger.
* hopefully this helps:) Mark me the brainliest:)!!!