Answer:
a) k should be equal to 3/16 in order for f to be a density function.
b) The probability that the measurement of a random error is less than 1/2 is 0.7734
c) The probability that the magnitude of a random error is more than 0.8 is 0.164
Step-by-step explanation:
a) In order to find k we need to integrate f between -1 and 1 and equalize the result to 1, so that f is a density function.
16k/3 = 1
k = 3/16
b) For this probability we have to integrate f between -1 and 0.5 (since f takes the value 0 for lower values than -1)
c) For |x| to be greater than 0.8, either x>0.8 or x < -0.8. We should integrate f between 0.8 and 1, because we want values greater than 0.8, and f is 0 after 1; and between -1 and 0.8.
(a) The value of k that makes f(x) a valid density function is k = 1/6.
(b) The probability that a random error in measurement is less than 1/2 is 3/4.
(c) The probability that the magnitude of the error exceeds 0.8 is 1/4.
(a) To make the given function f(x) a valid probability density function, it must satisfy the following conditions:
The function must be non-negative for all x: f(x) ≥ 0.
The total area under the probability density function must equal 1: ∫f(x)dx from -1 to 1 = 1.
Given , -1 ≤ x ≤ 1, and f(x) = 0 elsewhere, let's find the value of k that satisfies these conditions.
Non-negativity: The function is non-negative for -1 ≤ x ≤ 1, so we have ≥ 0 for -1 ≤ x ≤ 1. This means that k can be any positive constant.
Total area under the probability density function: To find the value of k, integrate f(x) over the interval [-1, 1] and set it equal to 1:
∫[from -1 to 1] = 1
∫[-1, 1] = 1
Now, integrate the function:
from -1 to 1 = 1
Simplify:
[3k - k/3 + 3k + k/3] = 1
6k = 1
k = 1/6
So, the value of k that makes f(x) a valid density function is k = 1/6.
(b) To find the probability that a random error in measurement is less than 1/2, you need to calculate the integral of f(x) from -1/2 to 1/2:
P(-1/2 ≤ X ≤ 1/2) = ∫[from -1/2 to 1/2] f(x)dx
P(-1/2 ≤ X ≤ 1/2) = ∫[-1/2, 1/2] (1/6)
Now, integrate the function:
from -1/2 to 1/2
Simplify:
(1/6)[(3/2 - 1/24) - (-3/2 + 1/24)]
(1/6)[(9/8) + (9/8)]
(1/6)(18/8)
(3/4)
So, the probability that a randomerror in measurement is less than 1/2 is 3/4.
(c) To find the probability that the magnitude of theerror (|x|) exceeds 0.8, you need to calculate the probability that |X| > 0.8. This is the complement of the probability that |X| ≤ 0.8, which you can calculate as:
P(|X| > 0.8) = 1 - P(|X| ≤ 0.8)
P(|X| > 0.8) = 1 - P(-0.8 ≤ X ≤ 0.8)
We already found P(-0.8 ≤ X ≤ 0.8) in part (b) to be 3/4, so:
P(|X| > 0.8) = 1 - 3/4
P(|X| > 0.8) = 1/4
So, the probability that the magnitude of the error exceeds 0.8 is 1/4.
To Learn more about probability here:
#SPJ6
Part 1: What is the angle measure, in degrees and rounded to the nearest tenth, through which the larger gear has rotated when the smaller gear has made one complete rotation?
Part 2: How many rotations will the smaller gear make during one complete rotation of the larger gear?
Show all work.
B. water
C. a tossed salad