B. Isotopes of the same element have the same mass number and different atomic numbers.
C. Isotopes of the same element have the same number of neutrons and a different number of protons.
D. Isotopes of the same element have the same atomic number and different mass numbers.
D. Isotopes of the same element have the same atomic number and different mass numbers.
Answer: C. Isotopes of the same element have the same number of neutrons and a different number of protons.
Explanation: Founders Educere answer.
Good luck my fellow summer school students, I love you all.
Please rate, thanks, & vote brainliest, I want a rank up already.
Answer:
water is denser
Explanation:
if you were to fill 2 55 gallon barrels of each product the water would weigh more because water is more dense
Answer:
0.22 grams of magnesium
This seems too low, so check the calculations/
Explanation:
How is the heat delivered? Is the magnesium hot and added to the water? If so, at what temperature.
Is the heat generated from an exothermic chemical reaction?
=================
I'll assume here that the heat comes from the reaction of magnesium with water. The balanced equation is:
Mg + 2H2O = Mg(OH)2 + H2
It has a heat of reaction of −924.7 kJ/mol.
We need enough Mg to heat 30 ml of water from 22°C to 90°C. The specific heat of water is needed. It is 4.184 J/g-K. It tells us that 4.184 Joules are needed to raise the temperature of water by 1 degree K.
30 ml of water with density 1 gram/ml means we have 30 grams of water. (We'll ignore the water that is added from the chemical reaction.).
Lets calculate the Joules required to raise 30 grams of water from 22°C to 90°C. Note that the specific heat has units of g and Kelvin. Since we need a temperature change, the number value for ΔT is the same for both °C and °K. So the temperature change is +68°K.
We can now calculate the Joules required:
(30 grams H2O)*(4.184 J/g-K)*(+68°K) = 8535.4 Joules or 8.5 kJ to 2 sig figs.
The Mg/H2O heat of reaction of −924.7 kJ/mol. will allow us to calculate the amount of Mg needed to supply 8.5 kJ. The minus sign tells us that the reaction RELEASES energy (the energy leaves the "system" of Mg and H2O).
Calculate the moles of Mg needed to release 8.5 kJ:
(924.7 kJ/mole)*(x moles) = 8.5 kJ
x moles = 0.0092 moles
Whoa. That is only (0.0092 moles)*(24.03 g/mole) = 0.22 grams of magnesium
This seems low to me, so check on the heat of reaction figure I used. And don't let the hydrogen get away.
Answer: D. all the empirical evidence available.
Explanation:
Answer:
D
Explanation:
(2) 2+ (4) 4+